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Abstract

In this paper we, as part of the Sussex-Huawei Locomotion-
Transportation (SHL) Recognition Challenge organizing
team, present reference recognition performance obtained
by applying various classical and deep-learning classifiers
to the testing dataset. We aim to recognize eight modes

of transportation (Still, Walk, Run, Bike, Bus, Car, Train,
Subway) from smartphone inertial sensors: accelerometer,
gyroscope and magnetometer. The classical classifiers
include naive Bayesian, decision tree, random forest, K-
nearest neighbour and support vector machine, while

the deep-learning classifiers include fully-connected and
convolutional deep neural networks. We feed different
types of input to the classifier, including hand-crafted
features, raw sensor data in the time domain, and in the
frequency domain. We employ a post-processing scheme
to improve the recognition performance. Results show
that convolutional neural network operating on frequency-
domain raw data achieves the best performance among all
the classifiers.
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Introduction

Transportation mode is an important type of context in-
formation that denotes users’ mobility status durig travel,
such as walking, cycling, driving car or taking a bus [3].
Analyzing such multimodal data enables context-aware
applications in fields such as intelligent service adapta-
tion, individual environmental impact monitoring, human-
centered activity monitoring, and so on.

In recent years, there have been numerous studies that
perform transportation mode recognition from smartphone
sensors [5]. However, it is difficult to fairly compare the
performance from various research groups due to their
different choice of dataset and classification task, sensor
modality and window size. To fill this gap and to promote
the advance of the research in the field, the Sussex-Huawei
Locomotion-Transportation (SHL) recognition challenge
was organized with an unified recognition task, dataset

and sensor modalities [10]. The challenge mainly aims to
recognize eight modes of transportation (Still, Walk, Run,
Bike, Car, Bus, Train, Subway) from multimodal smartphone
sensor data.

Machine learning techniques are widely employed to
recognize the transportation mode from multimodal sensor
data, such as accelerometer, gyroscope, magnetometer
and global positioning system (GPS). Various classifiers,
including the classical ones (e.g. decision tree, K-nearest
neighbour, support vector machine) and the emerging
deep-learning techniques, can be used for this recognition
task [4, 6, 11, 12]. Classical classifiers usually perform
feature computation and classification independently. In a

classical pipeline, hand-crafted features of the sensor data
are first computed and their number is reduced through
feature selection. This requires a deep understanding of the
relationship between features and activities. Deep-learning
pipelines instead learn the features and the classifier (deep
neural network) simultaneously from the sensor data. It
seamlessly integrates feature computation and classifi-
cation and thus, theoretically, would not need additional
interaction from researchers. Deep-learning pipelines have
been employed in human activity recognition successful-

ly [7], however their application in transportation mode
recognition is still in a very early stage. To the best of our
knowledge, transportation mode recognition with a deep
neural network (either a feed-forward or a convolutional
one) that operates directly on the raw sensor data has not
been reported in the literature. In [4] a feed-forward deep
neural network has been applied to transportation mode
recognition. However, the deep network does not extract
features from the raw data, and instead relies on hand-
crafted features.

In this paper we, as part of the challenge organizing team,
establish reference performance for the challenge by
applying various recognition pipelines to the challenge
dataset '. We consider classical pipelines using classifiers
including naive Bayesian (NB), decision tree (DT), random
forest (RF), K-nearest neighbour (KNN) and support vector
machine (SVM), and also consider the emerging deep-
learning pipelines, including fully-connected deep neural
network (FC) and convolutional neural network (CNN). We
combine three inertial sensors (accelerometer, gyroscope
and magnetometer), and feed various input to the the clas-
sifiers, including hand-crafted features, time-domain raw
data and frequency-domain raw data. A post-processing
scheme, which exploits the temporal correlation between

"The results reported in this paper will not enter the official competition.
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Figure 1: The duration of each
class activity in the training and the
testing dataset. The 8 class
activities are: 1 - Still; 2 - Walk; 3 -
Run; 4 - Bike; 5 - Car; 6 - Bus; 7 -
Train; 8 - Subway.

neighbouring frames, is employed to further improve the
recognition performance. We train the classifiers with the
training dataset and report evaluation results on the testing
dataset.

Dataset and Task

The Sussex-Huawei Locomotion-Transportation (SHL)
dataset is main source of the challenge 2. The dataset was
recorded by three participants engaging in 8 transportation
and locomotion activities in real-life settings: Still, Walk,
Run, Bike, Car, Bus, Train, and Subway. Each participant
carried four smartphones at four body positions simulta-
neously: in the hand, at the torso, in the hip pocket, in a
backpack or handbag. The complete dataset contains 2812
hours of labeled data and 16 sensor modalities [2, 5]. It is
considered as one of the biggest dataset in the research
community.

The SHL recognition challenge used the data recorded by
the first participant with the phone at the pocket position
in 82 days (5-8 hours per day). The challenge uses 62
days as the training dataset and 20 days for the testing
dataset. The challenge dataset provides the raw data
from accelerometer, gyroscope, magnetometer, linear
accelerometer, gravity, orientation, and pressure. The
sampling rate of all the sensors is f; = 100 Hz. Fig. 1
depicts the duration of each class activity in the training
and the testing dataset [10]. In this challenge, both the
training and the testing data are given in the form of 1-
minute segments, with their temporal order randomized.

The objective of the challenge is to train a classifier using
the training dataset and then apply this classifier to recog-
nize the transportation mode of sequences in the testing

dataset. The recognition performance is evaluated with F1

2http://www.shl-dataset.org
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Figure 2: Pipeline for transportation mode recognition using the
training and the testing datasets of the SHL recognition challenge.

score averaged over all of the activities. We additionally
measure the global recognition accuracy over all the data
samples.

Method

(a) Processing Pipeline

Fig. 2 depicts the processing pipeline for predicting

the transportation mode from the multimodal sensor

data. For the training dataset, the sensor data from

M modalities are segmented into L; short frames:
{s¢(1),- -+ ,se(l),-- -, 8¢(L¢)}, where s;(1) represents
the sensor data in the /-th frame. Given the labels in these
frames, {ct(1),--- ,c:(1),- -+, ce(Lt)}, are known, the
training data is used to train a classifier model. Subse-
quently, the sensor data from testing dataset is segmented
into L frames: {s(1),---,s(L)}, which are mapped into



one of the transportation classes with the trained classifier
mode. A post-processor follows to improve the recognition
results at individual frames.

(b) Sensor Input

We consider three inertial sensors for this recognition task,
i.e. accelerometer, gyroscope, magnetometer. Each sensor
contains three channels of measurement along the x-, y-,
and z-axis of device. Since the pose and orientation of the
smartphone is unknown, we combine the three channels by
computing the magnitude, i.e.

Ace = \/Acci + Acc2 + Acc? (1)
Gyr = \/Gyr% + Gyr2 + Gyr? 2)
Mag:\/Mag%—&-Mag;—i—Magg (3)

For the training dataset, we slide through the magnitude
sensor data in each 1-minute segment with a window of
length 5 seconds and skip size of 2.5 seconds, generating
framed data each containing 500 samples. For the testing
dataset, we similarly slide through each 1-minute segment
with a window of length 5 seconds and skip size of 5 sec-
onds. This procedure generates 375,130 frames of training
data and 68,376 frames of testing data. The classification is
conducted per individual frame.

We consider three different types of classifiers, the classical
classifier, the full-connected deep neural network (i.e. the
feed-forward neural network) and the convolutional deep
neural network. We consider three types of input to these
classifiers: hand-crafted features, time-domain raw data
and frequency-domain raw data. The data from all sensor
modalities are cascaded into a single vector as the shown
in Fig. 3. For the [-the frame, the time-domain raw data

(a) Time-domain raw data - Sy
| Sace(®: [1x500] | s5pr(D: [1X500] | Spngg(D: [1%500] |

(b) Frequency-domain raw data - Sy
[ Sacc@®: [1x251] [ Sy,(D: [1x251] [ Spag(D): [1x251] |

(c) Hand-crafted features - Sy
[ face@®: [1x150] [ fu0rD: [1X150] | frag(D: [1X150] |

Figure 3: Three types of input data to the classifier cascading
three sensor modalities. (a) Time-domain raw data. (b)
Frequency-domain raw data. (c) Hand-crafted features.

vector is represented as

s7(1) = [Sace(l), Sgyr (1), Smag ()],

where the vector s,../Sgyr/Smag denotes the accelerom-
eter/gyroscope/magnetometer magnitude samples in the [
frame.

The frequency-domain raw data vector is represented as
87(l) = [Sace(l), Sgyr(l), Smag(1)];

where S84/ gyr!/Smag denotes the magnitude of FFT
version of S4cc/Sgyr/Smay (retaining frequencies [0, fs/2]).

The feature vector is represented as

sa(l) = [£face(D); £ gyr (D), Firmag(D];

where f ../ f gyr! f mag denotes the hand-crafted features
computed on the accelerometer/gyroscope/magnetometer
sequence in the [-th frame. For each sensor modality, we
compute 150 features per frame, as suggested in [9]. This
feature set is a hybrid combination of statistical features
from the time and the frequency domain, the quantile range
of the data value, and the subband energy, etc.
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Figure 4: The processing pipeline using a classical classifier.

Table 1: Configuration of the classical classifiers. We use default
parameters of the Matlab function unless explicitly mentioned.

Classifier Matlab function Parameter

NB fitcnb /

DT fitcdt minleafsize = 1000

NumTrees = 20
RF TreeBagger minleafsize = 1000
KNN fitcknn /
svmirain
SVM svmpredict /

The time-domain raw data and the frequency-domain raw
are mainly used as input to the deep-learning pipeline while
the hand-crafted features are used for both classical and
deep-learning pipelines. In the following, we discuss the
details of the three types of classifiers.

(c) Classical pipeline

Fig. 4 illustrates the pipeline for predicting the transportation
mode with a classical classifier, which uses as input the
hand-crafted feature vector sy . A normalization procedure,
which maps each feature into the range [0, 1], is applied
before feeding the features to the classifier. This step aims
to increase the robustness of the classifier.

Let's use the i-th feature f; as an example. Suppose Q?°
and Q? are the quantile 95 and quantile 5 of f; across all
the frames in the training dataset. The normalization of
each frame is performed as

(1) = Q5
fi(l) + min (max (M, 0) ,1) . (4)

Input layer Hidden layer Decision layer

()

Normalization
Batch normalization
RelU
Dropout
FC
Softmax
Classificatin

Figure 5: The processing pipeline using a fully-connected deep
neural network.

Table 2: Configuration of the fully-connected deep neural network.

Input layer st /splsy
Number of layers = 3
Hidden layer Number of nodes per layer = 500

Dropout ratio = 25%
Mini-batch size 500

The features in the testing dataset are normalized in the
same way using Q9® and Q?, which are computed in
advance from the training dataset. After normalization, the
new feature vector in the [-th frame is denoted as sy (1).

Table 1 lists the five classical classifiers that are considered
for the recognition task: NB, DT, RF, KNN and SVM. The
first four classifiers are implemented with Matlab Machine
Learning Toolbox, while SVM is implemented with LIB-
SVM [1]. All the classifiers use default parameters set in the
library functions unless explicitly mentioned. For instance,
the KNN Matlab function uses a default value of K = 1.
We can also set the parameters manually. For instance, in
DT we set the parameter ‘minleafsize = 1000’; in RF we set
the number of trees as 20 and in each tree the parameter
‘minleafsize = 1000’.
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Figure 6: The processing pipeline using a convolutional deep neural network.

Table 3: Configuration of the convolutional neural network.

Input layer sT/sp

Number of layers = 3

Stride/kernal size per layer = 15
Padding size per layer =0

Number of channels per layer = 100
Number of layers = 3

Number of nodes per layer = 300
Dropout ratio = 25%

Mini-batch size 500

Convolution layer

FC hidden layer

(d) Fully-connected deep neural network

Here a fully-connected deep neural network (FC) refers to a
feed-forward neural network (we use this name throughout
the paper for consistence with Matlab Deep Learning library
functions).

Fig. 5 illustrates the architecture of the FC, which predicts
the transportation mode using one of the three types of
input: time-domain raw data (s7), frequency-domain raw
data (sp) or hand-crafted features (sg). Similar to Eq. (4),
all the inputs are normalized into the range [0, 1] before
going to the classifier.

In Fig. 5 the FC classifier consists of an input layer, multiple

hidden layers and a decision layer. The input layer contains
the input vector from s, sy or sg. Each hidden layer
contains a fully-connected (FC) layer, a batch normalization
layer, a nonlinear (ReLU) layer and a dropout layer. The
batch normalization layer normalizes each input channel
across a mini-batch, in order to speed up training of the
neural network and to reduce the sensitivity to network
initialization. The dropout layer randomly sets input ele-
ments to zero with a given probability in order to prevent
overfitting [8]. The decision layer contains a full-connected
layer, a nonlinear (SoftMax) layer and a classification layer,
which finally infers the transportation mode of the current
frame. Due to the large amount of data, we employ a mini-
batch processing scheme which updates the weights of the
neural network per subset of training samples.

We use the Matlab Deep Learning Toolbox to implement
the FC classifier. Table 2 shows the parametric configura-
tion of the FC classifier.

(e) Convolutional deep neural network

Fig. 6 illustrates the architecture of a convolutional deep
neural network (CNN), which predicts the transportation
mode using one of the two types of input: time-domain raw
data (s7), frequency-domain raw data (sr). Similar to Eq.



(4), all the inputs are normalized into the range [0, 1] before
going to the classifier.

In Fig. 6 the CNN classifier consists of an input layer,
multiple CNN layers, multiple FC layers and a decision
layer. The CNN layer contains multiple hidden layers,
where each layer consists of a convlutional layer, a batch
normalization layer and a nonlinear (ReLU) layer. The FC
layer contains multiple hidden layers, where each layer
consists of a fully-connected layer, a batch normaliza-

tion layer, a nonlinear (ReLU) layer and a dropout layer.
The decision layer consists of a fully-connected layer, a
nonlinear (Softmax) layer and a classification layer which
infers the transportation mode of the current frame. A mini-
batch processing scheme is employed to deal with the large
amount of data.

We use the Matlab Deep Learning Toolbox to implement
the CNN classifier. Table 3 shows the parametric configura-
tion of CNN classifier.

(f) Post-processing

The classical and deep-learning systems usually make a
decision per frame (5 seconds). In the SHL recognition
challenge, the data was chopped into segments of 1 min-
utes long. Since the transportation mode of a user typically
continues for a certain period and there is a strong correla-
tion between neighbouring frames [12, 13], we reasonably
assume that the transportation mode remains the same

in the 1-minute segment. Based on this assumption, we
propose a majority voting scheme to further improve the
recognition performance at individual frames.

Suppose the prediction results for the F' frames in the s-th
segment are ¢4(1), -+ , ¢cs(F), and the occurrence of each
activity is denoted as N;(1),- -+, Ns(8). The transportation

mode in this segment is unified as

Cs = Ns ] ) 5
= gy M0 g

and the prediction of all frames is updated as

és(f)zésv f:1a7F (6)

Results

For data processing we use a computer equipped with

an Intel i7-4770 4-core CPU @ 3.40 GHz with 32 GB
memory, and a GeForce GTX 1080 Ti GPU with 3584
CUDA cores @ 1.58 GHz and 11 GB memory. The code

is written with Matlab 2018a, calling functions from the
Machine Learning Toolbox and the Deep Learning Toolbox.

As indicated in Fig. 2, we use the training dataset (375,130
frames) to train the classifier, and then use the testing
dataset (68,376 frames) to evaluate the performance.

Table 4 summarizes the global accuracy and the F1 score
before and after post-processing for each classifier, and the
processing time for training and testing. The two measures,
global accuracy and F1 score, do not show big difference
for most classifiers.

For each classifier, post-processing can improve the recog-
nition performance effectively (F1 score by above 10%).
However, for some classifiers with low recognition accuracy
before post-processing, the improvement is not so evident,
e.g. NB and FC-time.

CNN-frequency performs the best among all the candidates
with the second-highest F1 score before post-processing
and the highest F1 score (92.9%) after post-processing.
FC-frequency achieves the third highest F1 score before
post-processing and the second highest F1 score after
post-processing. FC-feature achieves the highest F1 score



Table 4: Evaluation results on the testing dataset of the SHL
recognition challenge. KEY: A - accuracy; F1 - F1 score; PP -
post-processing; PT - processing time.

before PP after PP PT (s)
Classifier A%) [ F1(%) | A%) [ F1(%) | train [ test
NB 63.7 59.1 69.8 62.0 13 1.1
DT 71.2 72.6 80.7 82.0 91 0.1
RF 76.5 76.6 84.5 84.5 91 2.5
KNN 70.4 71.3 85.8 85.3 1.3 2567
SVM 78.7 79.2 87.1 87.0 32418 7777
FC-time 68.1 68.7 71.4 711 427 23
FC-frequency 82.5 81.7 91.5 90.4 362 2.0
FC-feature 82.4 82.7 89.9 90.2 502 3.1
CNN-time 80.3 80.8 85.9 86.6 8122 14.9
CNN-frequency 83.0 82.5 93.3 92.9 4604 7.5

(82.7%) before post-processing and the third highest F1
score after post-processing.

For the same input (e.g. time-domain or frequency-domain
raw data), CNN-based classifiers usually outperform FC-
based classifiers. In particular, for the two classifiers which
both operate on the time-domain raw data, CNN-time
significantly outperforms FC-time. Frequency-domain raw
data tends to provide more insightful information than time-
domain raw data, for both FC and CNN. Deep-learning
classifiers also work well with hand-crafted features, with
FC-feature outperforming all the five classical classifiers.
Among the five classical classifiers, SVM achieves the
highest F1 score (before and after post-processing) while
KNN performs the second best. RF performs slightly better
than DT, while NB performs the worst.

SVM is the most time-consuming algorithm for both training
(32418 s) and testing (7777 s) among the ten classifiers. It
takes even longer training time than the deep-learning clas-
sifiers. KNN takes the least time for training (1.3 s) among

all the ten classifiers but takes the second longest time for
testing (2567 s). KNN and SVM are the two classifiers that
take over 2000 seconds for testing. DT and RF both take
about 90 seconds for training and less than 3 seconds for
testing, while DT takes the least testing time (0.1 s) among
all the ten classifiers. The long testing time by SVM is quite
surprising because the classification procedure of SVM is a
linear operation, which is very fast.

Deep-learning classifiers usually take hundreds to thou-
sands of seconds for training. CNN-based classifiers take
10 times longer than FC-based classifiers for training.
Deep-learning classifiers take several seconds for testing,
which is comparable to classical classifiers. CNN-time takes
the longest time for testing (14.9 s) among all the five deep-
learning classifiers.

Table 5 presents the confusion matrices obtained by the 10
classifiers. The confusion matrices show that the first four
activities (Still, Walk, Run, and Bike) are better recognized
compared to the last four (Car, Bus, Train, and Subway).
The motion of the smartphones during walk, run and bike
is significantly higher than when the person is sitting or
standing in the car, bus, train or subway, thus making the
former four more distinctive than the latter four. There

is mutual confusion between the motor vehicles (Car vs
Bus), and between the rail vehicles (Train vs Subway).
The reason for this is the similar motion patterns during
these activities. Some confusion between Still and the
four vehicle activities (Car, Bus, Train and Subway) is also
observed. Typically, some vehicle classes are recognized
as Still. This is possibly because the smartphones tend to
be motionless when vehicle stops. Post-processing can
improve the recognition accuracy for every class activity.



Conclusion

We compared the transportation mode recognition perfor-
mance obtained by classical and deep-learning pipelines,
with input from hand-crafted features, time-domain raw
data and frequency-domain raw data of the SHL challenge
dataset. Unsurprisingly, random forest is highly recom-
mend among the five classical classifiers, trading off the
classification performance and the computational time.
Deep-learning classifiers achieve better performance than
classical ones at the cost of longer training time. CNN-
based classifier operating on frequency-domain raw data
achieves the best performance among all the classifiers.
The post-processing scheme can improve the recognition
performance remarkably.

The paper mainly aims to provide a reference performance
for comparison with the results from challenge participants
(which will be presented in [10]). We used off-the-shelf
software with default setting to implement the recognition
pipeline. There should be a lot of space to optimize the
performance and the processing speed. For instance, the
parameters of the classifier (in particular the classical ones)
can be tuned trading off under-fitting and over-fitting. The
slow classification time of the SVM library seems to be very
odd. A thorough theoretical analysis to explain the better
performance of the deep-learning classifiers would be our
future work.
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Table 5: Confusion matrices obtained by the considered classifiers. The F1 scores before(after) post-processing are also given. The 8 class

activities are: 1 - Still; 2 - Walk; 3 - Run; 4 - Bike; 5 - Car; 6 - Bus; 7 - Train; 8 - Subway. Key: PP - post-processing.
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