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Abstract

In this paper we summarize the contributions of participants
to the Sussex-Huawei Transportation-Locomotion (SHL)
Recognition Challenge organized at the HASCA Workshop
of UbiComp 2018. The SHL challenge is a machine learn-
ing and data science competition, which aims to recognize
eight transportation activities (Still, Walk, Run, Bike, Bus,
Car, Train, Subway) from the inertial and pressure sensor
data of a smartphone. We introduce the dataset used in the
challenge and the protocol for the competition. We present
a meta-analysis of the contributions from 19 submissions,
their approaches, the software tools used, computational
cost and the achieved results. Overall, two entries achieved
F1 scores above 90%, eight with F1 scores between 80%
and 90%, and nine between 50% and 80%.

Author Keywords
Activity recognition; Deep learning; Machine learning;
Mobile sensing; Transportation mode recognition

ACM Classification Keywords
H.5.m [Information interfaces and presentation (e.g.,HCI)]:
Miscellaneous; 1.5.4 [Pattern Recognition]: Applications

Introduction
The user’s transportation mode is an important contextual
information which enables adaptive services such as route
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Figure 1: The duration of each class

activity in the training and the testing dataset.
The 8 classes are: 1 - Still; 2 - Walk; 3 - Run;

4 - Bike; 5 - Car; 6 - Bus; 7 - Train; 8 -

Subway.

Table 1: Data files provided by the SHL
recognition challenge.

Modality

File

Train

Test

Accelerometer

Acc_x.txt
Acc_y.txt
Acc_z.txt

Gyroscope

Gyr_x.txt
Gyr_y.txt
Gyr_z.txt

Magnetometer

Mag_x.txt
Mag_y.txt
Mag_z.txt

Linear
accelerometer

LAcc_x.txt
LAcc_y.txt
LAcc_z.txt

Gravity

Gra_x.txt
Gra_y.txt
Gra_z.txt

Orientation

Ori_w.txt
Ori_x.txt
Ori_y.txt
Ori_z.txt

Pressure

Pressure.txt

Label

Label.txt

Order

train_order.txt

or parking recommendation, proactive suggestions about
transportation timetable, or more accurate measurements
of energy expenditure.

Several prior work looked at recognizing modes of trans-
portation from smartphone sensors [24, 25]. To date, most
research groups assess the performance of their algorithms
using their own datasets on their own recognition tasks.
These tasks often differ in the sensor modalities used or

in the allowed recognition latency. This makes it difficult

to compare methodologies and to systematically advance
research in the field.

To fill this gap and to support reproducible research, we
organized the Sussex-Huawei Locomotion-Transportation
(SHL) recognition challenge with a unified recognition task,
dataset and sensor modalities’. This paper introduces the
dataset used for the challenge and the protocol for the com-
petition, and summarizes and analyzes the achievements of
the participants contributing to the challenge.

Dataset and Task

Dataset

The challenge uses a subset of the Sussex-Huawei
Locomotion-Transportation (SHL) dataset [21]. The SHL
dataset was recorded over a period of 7 months in 2017
by 3 participants engaging in 8 different modes of trans-
portation in real-life setting in the United Kingdom, i.e.
Still, Walk, Run, Bike, Car, Bus, Train, and Subway. Each
participant carried four smartphones at four body positions
simultaneously: in the hand, at the torso, in the hip pocket,
in a backpack or handbag. The smartphone logged data
from 16 sensor modalities [23]. The complete dataset
contains up to 2812 hours of labeled data, corresponding

Thttp://www.shl-dataset.org

to 16,732 travel distance, and is considered as one of the
biggest dataset in the research community.

The SHL recognition challenge uses the data recorded by
the first participant with the phone at the hip pocket posi-
tion, and includes 82 days of recording (5-8 hours per day)
during a 4-month period. The challenge uses 62 days as
the training dataset (271 hours) and 20 days for the testing
dataset (95 hours). Fig. 1 depicts the duration of each
transportation activity in the training and testing datasets.
The dataset provides the raw data from 7 sensors, including
accelerometer, gyroscope, magnetometer, linear accel-
eration, gravity, orientation, and ambient pressure. The
sampling rate of all these sensors is 100 Hz.

Data Format

For both training and testing datasets, we chopped the data
into segments with a 1-minute non-overlap sliding window.
The order of the segments was randomly permuted so that
there was no temporal dependency among segments. This
guarantees that the maximum frame size used by partic-
ipants is one minute, and thus provides an upper bound

on the latency of the recognition pipeline. For reference,
the original order of segments in the training dataset is
provided.

As shown in Table 1, the training set contains 21 plain text
files (~5.5 GB) corresponding to various sensor channels,
the label and the segment order. The testing set contains
19 plain text files (~1.9 GB), similar to the training dataset
but without the label nor the segment order file.

Each sensor data file in the training set contains a matrix of
size 16310 lines x 6000 columns, corresponding to 16310
segments each containing 6000 samples (1 minute). The
data in the label file is of the same size (16310x6000), in-
dicating sample-wise transportation activity. The 8 numbers



in the label file indicate the 8 activities: 1 - Still; 2 - Walk; 3 -
Run; 4 - Bike; 5 - Car; 6 - Bus; 7 - Train; 8 - Subway.

The testing set has the same structure as the training
dataset, except that the data size is 5698 lines x 6000
columns, corresponding to 5698 segments each containing
6000 samples. The label file of the testing set will remain
confidential until after the challenge. It is used for perfor-
mance evaluation by the challenge organizer.

Task and Evaluation

The task is to train a recognition pipeline using the training
dataset and then use this system to recognize the trans-
portation mode from the sensor data in the testing set. The
recognition performance is evaluated with the F1 score
averaged over all the activities.

Let M;; be the (4, j)-th element of the confusion matrix. It
represents the number of samples originally belonging to
class 7 which are recognized as class j. Let C' = 8 be the
number of classes. The F1 score is defined as below.

recall; = _ M precision; = Mis (1)
e~ ; i T =C 1,
=1 Mij 2im1 M
Flo 1 < 2. recall; - precision; @)
€ % recall; + precision; -
Results

Thirty-five teams expressed interests in the initial registra-
tion stage. The teams had 1.5 months (1 June - 15 July)
to develop the methods and work on the challenge task.
Eventually, 17 teams contributed 19 submissions (2 teams
each with 2 submissions) in the final submission stage by
the deadline 20 July. In addition, we received two submis-
sions with extremely low F1 scores (below 12%), which
have not been included into this analysis. We received
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Figure 2: F1 scores obtained by the submissions for the training and testing
datasets. The submissions are ranked based on their F1 scores on the testing set
(see Table 2).

one submission that did not come with a scientific paper
with sufficient technical details. This associated paper has
not been accepted for publication. However, we still take
the submitted result into account in this analysis. Finally,
we have 19 submissions in total that are considered in this
summary paper. Table 2 summarizes the 19 submissions
and Table 3 shows the detailed confusion matrices comput-
ed on the testing dataset.

Fig. 2 depicts the F1 scores of each submission for the
training and the testing set, respectively. The submissions
are ranked based on their performance on the testing set
(Table 2). The performance of the submissions ranges
from 53.2% to 93.9%. There are 2 submissions achieving
F1 scores above 90% on the testing set, 8 between 80%
and 90%, 5 between 70% and 80%, and 4 between 50%
and 70%. In contrast, most submissions (16 out of 19)
achieve F1 scores above 90% on the training set. This
demonstrates that most submissions suffered from over-
fitting their recognition pipeline to the train dataset. Only the
top five submissions obtain similar results for the training
and testing sets. We briefly introduce the approaches used
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Figure 4: Training and testing time by
classical machine learning (ML) and deep
learning (DL) pipelines.

by the top five.

JSI-Deep achieves the highest F1 score of 93.9%. The ap-
proach uses an ensemble of deep and classical machine-
learning models and then smooths the estimation with a
hidden Markov model (HMM) [1]. JSI-Classic achieves

the second highest F1 score of 92.4%, by combining tree-
based XGBoost with advanced feature selection tech-
niques [2]. Tesaguri takes the third place with its F1 score
88.8%. It applies deep convolutional neural network (CNN)
to the spectrogram of the sensor data [3]. S304 and Confu-
sion Matrix achieve a similar F1-score of 87.5%. They both
employ classical machine learning approaches. S304 feeds
sensor features to a multi-layer perceptron neural network
and then smooths the estimation with HMM [4]. Confusion
Matrix employs a random forest model and then smooths
the estimation with major voting [5].

Summary of Approaches

We categorize the 19 submissions into two families: clas-
sical machine learning pipeline (ML) and deep learning
pipeline (DL). There are 11 ML submissions and 8 DL
submissions.

Fig. 3 box-plots the F1 scores obtained these two families.
DL tends to outperforms ML with slightly higher upper
bound and much higher lower bound of the box. This is
likely because using DL tends to require more work opti-
mizing the DL architecture, in contrast to ML approaches
which may have less hyper-parameters. In other words,
there is often more “human optimization” involved in using
DL effectively. However, the best DL performance (JSI-
Deep [1], 93.9%) is only 1.5% higher than the best ML
performance (JSI-Classic [2], 92.4%). While the approach
used by JSI-Deep is categorized as a DL pipeline, it is actu-
ally an ensemble of deep and classical machine learning

models. Since JSI-Deep and JSI-Classic are submitted
from the same research group, it might imply that DL does
not bring significant advantage over ML if both of them are
fully optimized. In addition, the second best DL approach
(Tesaguri [3], 88.8%), which uses a pure deep classifier,
obtains even lower F1 score than JSI-Classic.

Fig. 4 box-plots the training and testing time by ML and DL
pipelines. DL usually takes much more time for training than
ML, and takes slightly more time for testing. Specifically,

the training time ranges from 0.01 to 8.5 hours for ML, and
ranges from 0.3 to 90 hours for DL. The testing time ranges
from 3 to 900 seconds (with an exception at 10800 s)

for ML, and ranges from 13 to 1260 seconds (with an
exception at 18000 s) for DL. The ML classifier SVM shows
significant variation on the testing time, as reported by three
submissions: 3, 900, and 10800 seconds (Table 2).

Fig. 5 depicts the specific classifiers employed by ML and
DL pipelines. ML involves four classifiers: extreme gradient
boost (XGBoost), bags of trees / random forest (RF),
support vector machine (SVM), and multi-layer perceptron
neural network with less than 2 hidden layers (MLP). DL
involves four classifiers: deep multi-layer perceptron neural
network with more than 1 hidden layer (DNN), convolutional
neural network (CNN), recursive neural network (RNN), and
CNN plus long-short term memory neural network (CNN-
LSTM).

For classical machine learning, RF (5S - submissions) is
the most popular classifier, followed by SVM (3S), XGBoost
(2S) and MLP (1S). RF and XGBoost are both ensemble
methods. Among these classifiers, XGBoost achieves the
highest F1 score of 92.4%, followed by RF (87.5%) and
MLP (87.5%). For deep learning, the four classifiers (DNN,
CNN, RNN, CNN-LSTM) are equally used (each with 2S).
DNN achieves the highest F1 score of 93.9%, followed by



Classical machine learning
87.5%

81.1%

Submissions
or MW s G

RF SVM  XGBoost MLP

Deep learning

93.9% 88.8% 73.2% 76.6%

Submissions
ok MW s G

DNN CNN RNN CNN-LSTM

Figure 5: Classical machine learning and
deep learning classifiers used by the
submissions. The text on top of the bar
indicates the highest F1 score achieved by
each group of classifiers.

Deep learning

Participants

88.8% 86.3%

Raw Spectrogram Feature Hybrid
Input data

Figure 6: Type of input data to the
deep-learning classifier. The text on top of
the bar indicates the highest F1 score
achieved by each type of input.

2R

Submissions
ON B~ OO®MON

88.8% 87.5%

85.2% 81.1% 76.5%

AG AGP AGMP AGMRP  LGOPR LAGMOR LAGMOPR
Sensor modality

Figure 7 Sensor modalities used by the submissions. The text on top of the bar
indicates the highest F1 score achieved by each sensor modality. Key: L - Linear
accelerometer; A - Accelerometer; G - Gyroscope; M - Magnetometer; O -
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CNN (88.8%). RNN and CNN-LSTM both obtain F1 scores
below 75%.

ML generally uses hand-crafted features as input to the
classifier. One exception is [19] which feeds raw sensor
data directly to the classifier. DL may use different types of
input to the classifier (Fig. 6), including the raw sensor data
(5S), the spectrogram of the data (1S), and hand-crafted
features (1S). One submission [1] uses a hybrid input of
spectrogram and features (1S). The hybrid input achieves
the highest F1 score of 93.9%, followed by spectrogram
(88.8%) and features (86.3%). Raw data is most frequently
used but gives the lowest F1 score of 83.2%.

Fig. 7 summarizes the sensor modalities used by the
submissions, including accelerometer (A), gyroscope (G),
magnetometer (M), linear accelerometer (L), gravity (R),
orientation (O) and pressure (P). Most submissions use all
the 7 modalities (12S), achieving the highest F1 score of
93.9%. AG (2S) and AGMP (2S) are the second popular
group of modalities, achieving F1 scores of 88.8% and
87.5%, respectively. Other four group of modalities are
each used by only one submission, with AGMPR achieves
the highest F1 score among the four.

The submissions use different window (frame) size and

many employ post-processing techniques to improve the
classification accuracy by exploiting the temporal correlation
between neighbouring frames. Fig. 8 summarizes the
window sizes and the associated post-processing strate-
gies. Some submissions perform prediction at multiple
window sizes and then employ HMM or majority voting

to smooth the prediction in the longest window. For these
submissions, we just list the longest window. Four window
sizes are used, ranging from 0.1 second to 60 seconds.
The most popular window size is 60 seconds (11S with 4
using post-processing), with the highest F1 score of 93.9%.
The second most popular choice is a window of 3 seconds
(8S, all using post-processing), with the highest F1 score
87.5%. The third most popular window size is 30 seconds
(2S with 1 using post-processing), with the highest F1 score
86.3%. The other two window sizes are each used only by
one submission, and they both use post-processing.

Performance Analysis

Average Performance

In Fig. 2 the plot of the ranked performance for the test
dataset drops quickly once the F1 score is lower than 70%.
We thus only analyze the results from the submissions with
F1 scores above 70% (i.e. the top 15).

Fig. 9 box-plots the recognition accuracy for each class
activity (i.e. the diagonal elements of the confusion matrix),
among the top 15 submissions, and also presents the av-
erage confusion matrix of their results. It can be observed
from the box-plot that the class Train is the most difficult
activity to recognize, followed by Subway. Three other
classes, Still, Car and Bus, also show large performance
variance. The confusion matrix shows that the first four
activities (Still, Walk, Run, and Bike) are better recognized
compared to the last four (Car, Bus, Train, and Subway).
The motion of the smartphones during walk, run and bike
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class activity by the top 15 submissions and
the average confusion matrix. The 8 class

activities are: 1 - Still; 2 - Walk; 3 - Run; 4 -
Bike; 5 - Car; 6 - Bus; 7 - Train; 8 - Subway.

is significantly higher than when the person is sitting or
standing in the car, bus, train or subway, thus making the
first four activities more distinctive than the last four. There
is mutual confusion between the motor vehicles (Car vs
Bus), and between the rail vehicles (Train vs Subway). The
reason for this is the similar motion patterns during these
activities. Some confusion between Still and the four vehicle
activities (Car, Bus, Train and Subway) is also observed.

Transition

Submissions using a 1-minute window typically assume a
stationary class activity within this segment. However, the
challenge data also contains 1-minute segments with more
than one activities, i.e. transition between two activities
(Fig. 10). Out of the 5698 segments in the test data, 226
segments comprise one or more such transitions. In these
segments the stationary assumption does not hold any
more, and thus either doing prediction or post-processing
within a 1-minute frame may lead to erroneous results.

Fig. 11 depicts the recognition accuracy for segments with
and without transitions, respectively. For most submissions,
computing the performance for segments without transitions
does not change the performance results compared to

the performance computed on all segments. However,
most approaches yield significantly lower performance
when computed on segments with transitions only. The
submission S304 [4] performs the best by using a 3-second
window followed by HMM post-processing. The approach is
not constrained by the stationary assumption and thus may
capture the transition within the 1-minute segment.

Fusion

Finally, we investigate the possibility to further improve the
recognition performance by fusing the results from different
submissions. We apply a simple majority voting scheme
on 7 different groups of submissions. Group-1 fuses the

(a) A segment with transition

(b) A segment without transition
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Figure 10: An example of 1-minute segment with and without transitions.
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Figure 11: Recognition accuracy at segments with and without transition, and at a
mixture of the two (the original testing dataset).

results from the top 2 submissions, with F1 scores above
90%; Group-2 fuses the results from the top 5 submissions;
Group-3 fuses the results from the top 10 submissions;
Group-4 for the top 15 submissions; Group-5 for the entries
6 to 10; Group-6 for the entries 6 to 15; and Group 7 for
the entries 11 to 15. Fig. 12 compares the fusion result
with the best result from its constitute submissions. For
most groups, a simple fusion strategy can improve the
recognition performance especially when the classifiers
have F1 scores between 80% and 90%. An exception is
observed for Group-4, where the recognition performance
is degraded by including results with F1 scores widely

18
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ranging from 70% to 90%. The highest F1 score (94.7%)
is obtained by Group-3, which is 1% higher over over the
best submission within the top 10.

Implementation

Fig. 13 summarizes the programming languages used by
the submissions. Python (6S) and Matlab (3S) are the two
most popular languages among the 11 ML pipelines. Java,
R and C# are also used. For DL, Python is the dominant
language used by all 8 submissions. Fig. 14 summarizes
the machine learning libraries used by the submissions.
For ML, Scikit-Learn (Python) is the mostly used library
(8S), followed by Matlab Machine Learning Toolbox (3S)
and WEKA (2S). For DL, Keras (5S) is the most popular
library, followed by Tensorflow (2S) and Pytorch (1S).
Keras is a high-level library building on low-level libraries
including Tensorflow, Theano and CNTK, where at least two
submissions use the Tensorflow backend [6, 13].

Discussion on Over-fitting

Over-fitting is a very serious problem observed in most
submissions (Fig. 2). We summarize the three strategy that
are employed to tackle the over-fitting problem.

Cross-validation is an effective way to detect the over-fitting
problem. The strategy has been investigated specifically
by S304 [4] and it was discovered that, for the training
dataset (segments with random order), a random K-folds
partitioning scheme tends to introduce upward bias of the
performance and that the folds should be partitioned after
recovering the temporal order of the segments.

Ensemble method is another effective to tackle the over-
fitting problem, e.g. by using XGBoost [2] and RF [5].

Dropout has been employed in all the 8 DL submissions
to tackle the over-fitting problem in the deep learning

pipelines.

Conclusion

We reported the achievements obtained during the SHL
recognition challenge, where 2 submissions achieved F1
scores above 90%, 8 submissions between 80% and 90%,
5 between 70% and 80%, and the remainders between
50% and 70%. We summarized the approaches used

by these submissions and analyzed their performance.
Because the approaches are implemented by different
research groups with varying expertise, the conclusions
drawn will be confined to the submissions of the challenge.

The submissions can be divided into ML and DL pipelines.
Most submissions employ a post-processing scheme to
improve the recognize performance in the one-minute
segment. DL tends to outperform ML with a higher perfor-
mance lower bound (63.3% vs 53.3%). However, the best
performance achieved by ML approaches (92.4%) is only
1.5% lower than the best with DL approaches (93.9%). In
addition, this best DL approach [1] is an ensemble method
combining classical machine learning and deep learning
models. In this sense, DL does not show significant advan-
tage over ML. DL usually takes more training time than ML,
and takes comparable testing time to ML. DL utilizes three
types of input to the classifier, where spectrogram seems
to perform better than raw sensor data and hand-crafted
features. Most submission utilize all the 7 sensor modalities
for the recognition task. However, one submission [3]
utilizing two sensor modalities only (accelerometer and
gyroscope) achieves quite good performance (88.8%),
ranking 3rd among all the candidates.

Despite the promising results, some challenges were
observed. First, two class activities Train and Subway are
difficult to distinguish. Second, most submissions assume
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a stationary activity during the one-minute segment and, as
a result, the recognition performance degrades significantly
in segments with activity transitions. Third, over-fitting is still
a serious problem that degrades the performance of most
submissions. It is important to order the segments in the
dataset before doing cross-validation [4].

This challenge only releases a small part of the SHL
dataset for evaluating the recognition performance in case
of temporal variation (with a fixed user and fixed device
positioning). It would also be interesting to investigate the
performance in case of user variation and device position-
ing variation. One submission [4] tentatively touched on
this topic with the preview SHL dataset. In future we will
contribute a more comprehensive evaluation framework
with the full SHL dataset, as outlined in [22].

For reference, we present the benchmark performance
obtained with various classical machine learning and deep
learning pipelines [20]. Interestingly, the best performance
achieved from our side (92.9%, Table 3) is quite close to the
best performance of the submissions (93.9%).
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Table 2: Summary of the SHL recognition challenge result.

Performance Computational resource Time Implementation
Approach|Rank| Team Classifier Input Post- | Frame sensor Model Ref
PP P process| size modality Train Test CPU GPU | Train [h] | Test [s]| Lang. Library [size (MB)
JSI- 4-core@3.6GHz .
5 5
2 | e XGBoost| Features /| 60s| LAGMOPR| 93.7%| 92.4% ANL160 / 8.5 20| Python| ScikitLearn 43| (2]
24- 2.5GH
4 |s304 MLP| Features| HMM 3s AGMP| 85.7%| 87.5% coreﬁMsan /| o02s so|  Java / 0.035| [4]
Confusi Rand 4- 2.5GH
5 N‘l’a"t:;"m al:"or‘:r; Featuresy Mv|  3s| LAGMOPR| 96.8%| 87.5% Cm@;AM gé /| 015|324 python| scikittearn|  1122| [5]
UCLab- Rand 16- 3.4GH
7 Vra:o a;‘o:e’:; Features| MV 3s AGMRP| 94.2%| 85.2% c°reSM 64é TiTanV 3 10| Python| Scikitlearn 130| 7]
Ubi- Random 6-core@3.6GHz 2x
) 5 -
8 NUTS Forest Features MV 1s LAGMOPR| 97.0%| 83.5% RAM-128G| GP100 0.41 7| Python| Scikitlearn 198 [8]
8- 2.4GH
ML |10 |Drifterst SVM| Features| M| M-60s LGOPR| 95.9%| 81.1% CweﬁM_soé / 05| 900| Java WEKA 170| [10]
11 23:01 SVM| Features /| 60s| LAGMOPR| 92.8%| 79.9% A'Core(‘ii;(;:é /| oo 3| Matlab| ML Toolbox 117 [11]
Maximum Random 8-core@2.9GHz ML Toolbox
14 Feat 60 AG| 82.8%| 73.4% 025 300| Matlab 87| (14
Analytics Forest eatures / s i i RAM-8G / atia RapidMiner (14]
2 2.1GH
17 |Moon XGBoost| Features / /| LAGMOPR| 90.0%| 57.8% Cm@’iAM gé / 2| 00 R|  XGBoost /| 1
2 2.6GH
18 |TK2 SyM| Features|]  Mv| M-60s AGP| 90.0%| 53.2% cm@:{AM sé / 3.5 10800 c#| Accord.NET|  5300| [18]
19 |ideas Ra:;z:: Rawdata| MV| 0.1s| LAGMOPR| 97.3%| 53.2% 14'C°re§i’36:é / 3 50| Python| Scikitlearn| 22576| [19]
Spectro-
JSI- Ensemble 4-core@3.3GHz GTX Keras
1 .0%| 93.99 .
beep (ONNAMD) feg;taur?e: HMM|  60s| LAGMOPR| 96.0%| 93.9% el 1070 6.5 20 python| (o s00| [1]
4-
. Spectro-| 6x(
3 Tesaguri CNN ram / 60s AG| 93.0%| 88.8% core@2.5GHz / 90 300 Python Keras 31 [3]
8 RAM-8G)
6 |Drifters2 DNN| Features|  Mv| M-30s| LAGMOPR| 97.7%| s6.3%| 5 COre@24GHz  GTX 1| 180| Python Keras 84| [6]
RAM-30G| 950M
UCLab- 24-core@3.4GHz
DL 1%| 83.29
S |Nomr | CNN+LSTM| Raw data /| e0s AGMP| 93.1%| 83.2% eanr 1990|567 12| 600| Python|  Pytorch 12| [9]
Power-of- 40-core@2.3GHz ScikitLearn
12 CNN+LSTM| Raw dat 60s| LAGMOPR| 92.0%| 76.6% 0.27 13| Pyth 81| (12
Things * aw data / s i i RAM-64G / ython Tensorflow (12]
12- 3GH
13 |Vahan | CNN+LSTM| Raw data /| 30s|  LAGMOR| 96.4%| 76.5% cc’;@fw 60; Titan X 45| 210] Python Keras 40| [13]
Yonsei- 4-core@4.2GHz GTX
) 5
15 | RNN| Raw data /| 60s| LAGMOPR| 68.0%| 73.2% e 1080 72| 18000| Python| TensorFlow|  83.7| [15]
UOW- 10-core@1.2GHz Tesla
. 5 5
16 AMRL RNN| Raw data MV| M-60s LAGMOPR| 97.0%| 63.3% RAM-256G P100 22 1260 Python| TensorFlow 5.4 [16]

Key: The entry ‘M-60s' in the column "Frame size' denotes the approaches use multiple window sizes and the longest window is 60 seconds.

MV - majority voting.




Table 3: Confusion matrix (F1 score) of each submission for the testing dataset. The 8 class activities are: 1 - Still; 2 - Walk; 3 - Run; 4 - Bike;

5 - Car; 6 - Bus; 7 - Train; 8 - Subway.

SSe|d YyInJl punol

N ) o
MM:lOOOOlU% 3000382% 11003w4% coocoooocuwy
—_
—_— o
nm|tooo o g« 0o—HooMmM~o e|IN O OO A g D g OO0 -OoY
< R = 45”1 Q3| 25
Nldooo9n cocoooanN N oo o® 3
o 1880% NR DA™ HNSMOOOOS%3O
2 N
X[+ ooo o |oooo =|lnooco% < —
£ %830“ LUV ao|T(m 8511%00009210
(1] ™ ] — -
MO 490000“00 %OOOOnMLZSOW:alSOkOOOWOOOO
» r
© = ~
MOOMOOOOOM00900000.%00900000m00%00000
B |~ Ll I N <
3 %110100.0- %420110%39310000m1%120111
c
..w%2010373 %0001224Y91011245MW1010162
-
o ] NS
o ™M ™ o =|wv — o o ° ™ oM
cooo9ony 000152M% coo ooy °o™axR
—_ =) )
“ooo =~ S|¥ oo -m WoooN< 9o 949 oYVunan
HMWl %wnl < ¢ - NN
—_ wn N — ~ ™ —_ = o
%00002%2010 004%92ﬂ\10001ﬁ92%1 25%9%
o *x o ~ o
o o oo - o—=om = o oo o © —
N Rowo|lZ|° o™ s g RN e Rodw
T © n =0
olo\010%0000m025%0010mZSl%Ole(M11%48w1
< < H4
WOO%ZOOOO.NWOIMOOOOOmOIMIOOOO%OOBOOOOO
w H T
OWOIOOOOW2%120111m1%430111 TR oMo N g«
') =
92011281Uwz111163WM10113olow BOOIZHGZ
-
mooo«=n~g g Nooo©e«Qd 500012%% oNoO-NST
™ ™ ™ bl n o co Yo~
HooooNg g _|MOoo™nunn Moocoongn noooQyd 8RN
—_ S
/01 M/ o~ < - -
W 0005%22%OOOOl%SO%ZOOOaaWNQ\%IG © 7 mnswN
sloocoocoom M| cooo g < |no 00w Do~ oNg
wm M N Ol 8620% 9643M RO~
.ﬂOOO%OOOOE052%0000“040%00005\INZMOIIO
S 2
© ~
WOO%OOOOON_00%00000%00%10000&“00%10000
L -
ﬁ2%120111.UD1%410110V1%490111 ocwnYyoooo
o
Socoococodnmn TmoNaN~N® BZOIllMH BlOOSHM“
o -
n o~ Ll Mmoo M NO - m ]
©cooo0o -y “ooocowgR |"woo °Rv acg
o
10000136\/ﬂ10000081Ww0001390 RIOOMHQS
g e L s -
B 3
< OO0 o<uw;m N “ococoo g “oon” g < NowN )
g @ <O\ D o of Q" AN o N[R|D eIay
L = I
Nloooouwm RVt ocoocoa o o o 0 co«n
) o~ ~ o7 8910Mu1 RO =2 Radw
o ~ c ~ £ nom in — 0 m
2 Y8 ococoog|° Y Y Roooo|E|" Y RooooT(¥TE "R o
2 o = c el
G |oow > |lcoo u — m o ©o
S R 900000@0 910000m04520000
T © M
91%100111&.2%300100m2%550211 MOV Ooyma
E4
=]
Nroocodo~ %2011472%&1011794 ANOdNgma
-
o
OOOOOOB% 310002E_Q/J 110003B.owv 510041%&
< S
NN = © ©
©oo0o0ocomg_(mroogNygwoootmegatool3 8y
—_ >
R | X =] © S o
3 coon® ol |"CPCPC0FgolaNCO RS L w@STOONNN g
Q 0 o ” —
%0000%020%0000%320”1000”..920!.@wOOOHH,ﬂ.l
2 = c -
WOOI%OOOOZ&OOlWOOOO.mllO%OlOOW940%0230
Vo o~ S|locow Qlo -« < o
a 900000%.»:. QOOOOOM 920000W_O S92 0co00o
B o ‘| o ® (N O o
4] QAN O Ao 9310010“ AOMo -5 loa PN o~ o
=]
L4o0oo0o0ogo N1 odo—do- Boooasgm NS OO 4N
- < —
AN N O~ AN N O~ s aNMm S N O~ NS N O~ 0

123 45 6 7 8 1 23 4 5 6 7

2 3 45 6 7 8 1 23 4 5 6

1

2 3 45 6 7 8

1

Predicted class



	Introduction
	Dataset and Task
	Dataset
	Data Format
	Task and Evaluation

	Results
	Summary of Approaches
	Performance Analysis
	Average Performance
	Transition
	Fusion

	Implementation
	Discussion on Over-fitting
	Conclusion
	REFERENCES 

