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ABSTRACT
The Sussex-Huawei Locomotion-Transportation (SHL) recognition
challenge organized at the HASCA Workshop of UbiComp 2020
presents a large and realistic dataset with different activities and
transportation. The goal of this human activity recognition chal-
lenge is to recognize eight modes of locomotion and transportation
from 5-second frames of sensor data of a smartphone carried in the
unknown position. In this paper, our team (We can fly) summarize
our submission to the competition. We proposed a one-dimensional
(1D) DenseNetX model, a deep learning method for transportation
mode classification.We first convert sensor readings from the phone
coordinate system to the navigation coordinate system. Then, we
normalized each sensor using different maximums and minimums
and construct multi-channel sensor input. Finally, 1D DenseNetX
with the Gated Recurrent Unit (GRU) model output the predictions.
In the experiment, we utilized four internal datasets for training
our model and achieved averaged F1 score of 0.7848 on four valid
datasets.

CCS CONCEPTS
•Computingmethodologies→Artificial intelligence; •Human-
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1 INTRODUCTION
In recent years, the ownership of mobile devices, especially smart-
phones, has grown rapidly. Hence, the smartphone has almost
become an integral part of human life. Human activity recognition
is one of the widely studied topics in recent decades. Knowledge
about the specific human behavior in urban areas is beneficial to
healthcare monitoring, safe driving, and journey planning.With the
powerful perception capabilities and ever-increasing computing of
mobile devices, human-activity-recognition-based smartphones at-
tract much attention. Transportation mode recognition as a branch
of human behavior recognition has a great influence on human life
such as traffic management, route or parking recommendation, and
footprint analysis.

The SHL recognition challenge Dataset [3, 12] contains multi-
modal locomotion and transportation data, which can be used in an
activity recognition challenge. The goal of the 2020 SHL recognition
challenge focuses on recognizing transportation modes in a user-
independent manner with an unknown phone position. According
to the experience in SHL recognition challenge 2018 [13] and SHL
recognition challenge 2019 [11], we report that it is challenging
to train a model using the smartphone data collected at a specific
body position and test the model using the data collected from a
new position. JSI_First [7] derived additional sensor streams from
the existing ones and calculated a large body of features. They
then used cross-location transfer learning via specialized feature
selection and performed a two-step classification. Yonsei-MCML [2]
proposed a deep multimodal fusion model. The sensor data are inde-
pendently pre-processed via a convolutional neural network (CNN),
and the results are combined with the EmbraceNet fusion algorithm.
We-can-fly [14] employed a 1D DenseNet model working on the
multi-channel sensor data simultaneously. Another challenge in
SHL recognition challenge 2020 is the diversity of devices and users.
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The mismatch between the different devices data in training and
testing phase degrades the performance significantly.

In this paper, following with the 1D DenseNet model, we pro-
posed a one-dimensional (1D) DenseNetX model for transportation
classification. We independently extract higher-level features from
magnetometer, acceleration, linear acceleration, gravity, gyroscope
sensor by 1D DenseNetX. Then we slice the feature-map extracted
by multi-sensor 1D DenseNetX and concatenate the features in
chronological order. The concatenated features are fed into the
GRU [1] model, and the output features of GRU are used together
with the DenseNetX extracted features for the final classification.
Furthermore, we employ the multi-model fusion to improve the
performance. We participate in the SHL recognition challenge 2020
challenge under the team name of “we can fly”.

2 SHL RECOGNITION CHALLENGE 2020
DATASET

The SHL recognition challenge dataset contains eight modes of
locomotion and transportation, including still, walking, run, bike,
car, bus, train, and subway. The 2020 challenge used a subset of the
SHL recognition challenge Dataset, and all of the participant teams
aim to accomplish the task below. The sponsor divided the data into
three parts: train, validate, and test. The data comprises of 59 days
of training data, 6 days of validation data, and 40 days of test data.
The train, validation, and test data were generated by segmenting
the whole data with a non-overlap sliding window of 5 seconds.
Each sample contains 500 sensor values, which are acquired with a
sampling rate of 100 Hz.

The train data contains the raw sensors data from one user (user
1) and four phone locations (bag, hips, torso, hand). The validation
data contains the raw sensors data from the other two users (mixing
user 2 and user 3) and four phone locations (bag, hips, torso, hand).
Both the training and validation splits contain the ground-truth
labels along with the sensor data, whereas the testing split does not.
The goal of the SHL recognition challenge 2020 is to recognize the
user activity from data coming from the phone of the “test” user (a
combination of user 2 and user 3). The location of that phone on the
“test” user is not specified. Recognizing modes of transportation in
a user-independent manner with an unknown phone position is
more challenging than before.

3 MODEL DESCRIPTION
1D Multi-Sensor DenseNet [14] has achieved success in the 2019
SHL recognition challenge. Hence, wemodified the 1DMulti-Sensor
DenseNet and named it 1D Multi-Sensor DenseNetX. Figure 1
shows the structure of the 1D Multi-Sensor DenseNetX model,
including multiple sub-DenseNetX. Each sub-DenseNetX receives
multi-channel sensor data as input. Six sensor data, including ge-
omagnetic, acceleration, linear acceleration, gravity acceleration,
gyroscope, and barometric, are used to extract transportation mode
features. First, the sensor input passes through the input convolu-
tion block. Then the outputs of the input convolutional layer will
feed into the first depth-wise separable dense block. Each depth-
wise separable dense block is followed by a transition layer to
transition and compress the channels. The output of the transition
layer will feed into the next depth-wise separable dense block. In

our model, we perform Batch Normalization (BN) [6] and SELU [9]
before each convolution layer.
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Figure 1: The system architecture of the proposed 1D Sensor
DenseNetX and GRU model.

3.1 Input Convolutional Block
The input convolutional block consists of two different convolu-
tional types which extract features from different receptive field.
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We define the number of feature-map generated after each con-
volution as growth-rate k. The first type of convolution is a full
channel convolution operation, which extracts 2k feature-maps.
The full channel convolution operation is the standard convolution
we used to exploit the features of all channels in the original in-
put. The second type of convolution is to extract features by each
channel independently, which we name this kind of convolution as
SPC Conv. The input data comprise of multi-axis sensor data and
each channel corresponds to one axis. SPC Conv focuses on exploit
features on each axis and generates a total of 2k feature-maps. We
then concatenate the output of full channel convolution and SPC
Conv together to 4k feature-maps.

3.2 Depth-wise Separable Dense Block
The depth-wise separable dense block is the basic block in the
DenseNetX model. In our configuration, each DenseNetX model
contains 2 depth-wise separable dense blocks. Each depth-wise
separable dense block consists of 12 “depth-wise-point-wise oper-
ation”. Each “depth-wise-point-wise operation” as a consecutive
operation that continuously executes one-dimensional depth-wise
convolution with a kernel size of 3 and a one-dimensional pointwise
convolution with a kernel size of 1 that generates k feature-maps.
The characteristics of DenseNet [5] is to connect each layer to ev-
ery other layer in a feed-forward fashion in the basic block. We
strengthen feature propagation and encourage feature reuse in our
model. For each “depth-wise-point-wise operation”, the feature-
maps of all preceding layers are used as inputs in each basic block.

3.3 Transition Layer
The transition layer connects two depth-wise separable dense blocks.
We follow with [14] that design the transition layer to improve
model compactness by reducing the number of feature-maps and
the dimensional of each feature-map in the transition layer. The
transition layer includes two parts, a “depth-wise-point-wise oper-
ation” and a max-pooling layer. The “depth-wise-point-wise opera-
tion” needs a compression rate to limit the output channel number,
which is configured to 0.8 * input channel number.

3.4 SE Block
Inspired by [4], we introduce the attention mechanism to calibrate
the features extracted by the convolutional operation. We perform
the feature calibration on the features extracted after the first dense
block is compressed by the transition layer and the features ex-
tracted from the last block.

3.5 Feature Combination
After obtaining the feature-maps of 1Dmulti-Sensor DenseNetX, we
leverage adaptive max pooling to align the dimensions of all feature-
maps. Since the features are extracted according to the positive
sequence convolution in the time series according to a frame of
data, the output feature-map can also be argued as obtained under
different receptive field windows according to the time series. We
splice the values of the same position among different feature-maps.
The new features after splicing can be used as input features in each
step of the GRU network. Thereby we introduce a GRU network
that extracts the temporal features. Finally, each feature-map of 1D

multi-Sensor DenseNetX will be transformed into a 1-dimensional
feature by a learnable matrix. We then concatenated these features
with the temporal features of GRU together to the classification
layer with an output size of 8. The output of the classification layer
will be processed using soft-max, and the most appropriate label
will be selected.

4 EXPERIMENTS
In our pre-processing data phase, since the sensor reading is ob-
tained in the coordinate system of themobile phone, the sensor read-
ing varies significantly in different phone locations. To eliminate
the difference of sensor data caused by different phone locations,
we convert geomagnetic, acceleration, linear acceleration, gravity,
and gyroscope data from the phone coordinate system to the navi-
gation coordinate system. In our model training phase, we set the
growth-rate k to 12 and use cross-entropy as a function of loss
and use Adam [8] to optimize during training. During the training
process, we set a starting learning rate of 5e-4, every 5 epochs to re-
duce the learning rate to the previous 20%. In our parameter tuning
phase, we leverage four datasets (train_bag, train_hand, train_hips,
train_torso) to train our model and four valid datasets (valid_bag,
valid_hand, valid_hips, valid_torso) to validate our model. Each
training includes a total of 30 epochs, and we select the model
parameters corresponding to the lowest loss in the valid datasets
from 30 epochs as the final model. During our commit phase, we
trained with all the data to improve the performance of the model.

4.1 Experimental Results on Valid Datasets
In the previous SHL recognition challenge, F1-score is adopted for
evaluation metric. Therefore, we evaluate our model using the F1-
score method by four validation datasets. We obtained F1 scores
of 0.8419, 0.7337, 0.7553, and 0.8082 on valid datasets of valid_bag,
valid_hand, valid_hips, and valid_torso respectively. From the com-
parison of the accuracy of the valid datasets of four different phone
positions, we found that the accuracy of the hand dataset was the
lowest, indicating that the influence of the device and user hetero-
geneity on the hand data was the greatest. On the contrary, the
mobile phone position is less disturbed by other behaviors of users
when it is in the bag, so the model can also obtain higher accuracy
in the migration of different users and devices. Besides, Tables 1
to 4 show the confusion matrix on the four valid datasets. The 8
class activities are: 1 - Still; 2 - Walk; 3 - Run; 4 - Bike; 5 - Car; 6 -
Bus; 7 - Train; 8 – Subway. It can be seen from the confusion matrix
that trains and subways are two kinds of traffic patterns that are
difficult to distinguish in the hand position.

4.2 Computational Resources
We used 1 GPU on 1 server.

• 1 GPU (NVIDIA TESLA V100), Intel(R) Xeon(R) Gold 6132
CPU (2.6GHz 14cores/28threads), 128GB RAM

• Language: Python 3.8.0
• Framework: PyTorch 1.5

The size of the trained model is about 35 MB. It took to train the
model for about six hours. It took to evaluate the test dataset for
about 2 minutes.
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Table 1: Confusion matrix of valid_bag

1 2 3 4 5 6 7 8
1 5323 86 0 29 44 28 264 190
2 364 4683 10 55 0 7 56 55
3 1 22 355 176 0 0 0 1
4 68 65 0 2071 38 31 93 40
5 26 4 0 0 3128 806 70 60
6 4 13 0 4 95 1680 31 9
7 134 26 0 11 60 51 3757 323
8 26 11 0 3 10 3 509 3780

Table 2: Confusion matrix of valid_hand

1 2 3 4 5 6 7 8
1 5155 77 1 51 67 103 382 128
2 348 4373 7 153 37 154 119 39
3 3 49 494 6 0 2 1 0
4 63 131 14 1287 31 691 144 45
5 257 28 0 69 1914 1230 542 54
6 44 12 0 3 183 1536 53 5
7 274 23 0 14 102 156 3325 468
8 128 14 0 6 118 18 829 3229

Table 3: Confusion matrix of valid_hips

1 2 3 4 5 6 7 8
1 5491 50 0 13 27 38 234 111
2 441 4599 5 64 2 13 68 38
3 2 23 329 199 0 2 0 0
4 109 610 10 1444 11 80 109 33
5 244 4 0 0 1996 1277 511 62
6 48 17 0 0 56 1592 111 12
7 185 26 0 8 53 115 3710 265
8 88 11 0 0 5 4 756 3478

Table 4: Confusion matrix of valid_torso

1 2 3 4 5 6 7 8
1 5459 36 0 53 38 17 226 135
2 442 4556 8 110 8 6 66 34
3 1 65 367 111 0 6 0 5
4 59 39 0 1554 10 31 610 103
5 143 5 0 13 3104 645 111 73
6 109 9 0 18 25 1585 81 9
7 323 22 0 6 6 15 3667 323
8 90 10 0 5 4 2 794 3437

5 CONCLUSION
We proposed 1D Sensor DenseNetX for the SHL recognition chal-
lenge.We construct a sub-DenseNetX for geomagnetic, acceleration,
linear acceleration, gravity, gyroscope, and pressure sensor. Then

we connect the output of all subnets and feed the features into GRU.
After soft-max, we got the final classification result. As a result of
classifying test data of the SHL recognition challenge, our model
obtained F1 scores of 0.8419, 0.7337, 0.7553, and 0.8082 on valid
datasets of valid_Bag, valid_Hips, valid_Torso, and valid_Hand
respectively. Overall, the average F1-score across the four valid
datasets was 0.7848. The above results indicate that the location of
smartphones, especially hand position, still has a great influence
on traffic pattern recognition. The recognition result for the testing
dataset will be presented in the summary paper of the challenge
[10].
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