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ABSTRACT 
Team “DL_Lock”: The Sussex-Huawei Locomotion-
Transportation (SHL) recognition challenge 2020 poses a unique 
opportunity to work on a broad, real-life dataset to classify 
transport-related activities in a user and location-independent 
manner. Since deep learning architectures have now received 
great attention on achieving promising results on time series 
classification tasks, we focused our experiments on some recent 
state-of-the-art deep learning architectures such as CNN, Resnet, 
and InceptionTime. A considerable amount of time was spent on 
the preprocessing pipeline, which turned out to be a critical phase 
that impacted most of the results. At the end and after many 
experiments and hyperparameter tuning, we were able to achieve 
a 79% F1 score on the validation dataset using InceptionTime 
architecture. The objective of this paper is to present the technical 
description of the Machine Learning processing pipeline, the 
algorithms used, and the results achieved during the 
development/training phase. 
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1   INTRODUCTION 
Team “DL_Lock”: Recognizing human activity is a challenging as 
well as an interesting problem. In this regard, we wanted to 
recognize the modes of transportation using the inertial sensor 
data of a smartphone. Recognizing modes of transportation is a 
very useful information that can help in many applications such 
as transportation and parking recommendation systems.  For this, 
we used the Sussex-Huawei Locomotion-Transportation (SHL) 
dataset which is a public dataset with thorough description [1, 2]. 
The dataset is intended to be used by researchers for activity  
recognition, sensor fusion, traffic analysis and many other 
purposes. The SHL locomotion challenge 2020 [3] provides an 
excellent opportunity to recognize modes of transportation in a 
user-independent manner with an unknown smartphone position. 
For this, we were given inertial sensor data of a single subject 
where sensors are attached in multiple body positions and 
expected to generalize to other subjects with unknown 
smartphone location.  What made this challenge very interesting 
was the fact that besides the hardware and location differences, 
people also perform the same activities in a distinguish ways. 
Therefore, it is a hard problem  
to train a model for a single subject and expect it to generalize 
easily to other subjects specially if the activities are quite similar 
like the modes of transportation.   
This paper describes how we approached the problem, cleaned the 
data, built the preprocessing pipelines, and conducted the 
experiments using multiple deep learning algorithms. At the end 
of the paper, we will discuss the final selected model and the 
results achieved against the validation dataset.  

2   DATA PROCESSING PIPELINES 
A considerable amount of time was spent on data preprocessing. 
A quick summary of the data used in this challenge is explained 
below: 

• The training data consists of raw sensor data recorded from 
a single subject called user 1. There is a total of 7 sensor 
types, namely acceleration, gravity, gyroscope, linear 
acceleration, magnetometer, orientation, and pressure. All 
seven sensors have data from 3 axes (x, y, z) except for the 
orientation sensor, which has a fourth axis w. The sensors 
are attached to the user in four different locations, namely 
bag, hips, torso, and hand. The full dataset contains 784288 
total frames, each representing 5 seconds worth of data at 
100Hz sampling rate, or 500 samples per frame.   
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• The validation dataset is similar to the training dataset; 
however, it was recorded from other subjects, namely users 
2 and 3. Consistently as the training dataset, the data comes 
from four different locations. There is a total of 115156 
frames, each containing 500 samples.  

• During experiments, we have generated an exploration 
dataset of 30% of both the training and validation sets. Once 
promising algorithms were found, the experiments were 
conducted on the full dataset. All the models were trained on 
only the training set and evaluated against only the 
validation set. 

• In the end, we found the final model architecture that showed 
promising results and proved to be able to generalize well in 
a user and location-independent manner. This final selected 
model was given some part of the validation samples (50% of 
the given validation dataset) to increase the chances of 
getting good results in the test set since the model would 
have seen some samples from users 2 and 3. Finally, the 
model was evaluated on a held subset from the validation 
dataset (the other 50% of the given validation dataset) using 
a k-fold cross-validation technique to reduce overfitting. 
Doing this has improved the model performance by 5 % since 
having more samples from other subjects is always 
beneficial. More details are shown in Table 1. 

In the following sections, we will explain the pipelines used to 
preprocess the data before applying any algorithms. 
 
2.1   Data Preparation 
We have performed the following activities to prepare the data for 
any further processing: 

• Data were resampled from 100Hz to 50Hz. With 100Hz, the 
models were more susceptible to overfitting. We 
experimented with multiple sampling rates, such as 25H and 
75Hz. We achieved the best results with a 50Hz sampling rate 
or 250 samples per frame. 

• Data were normalized and standardized either manually 
using sklearn MinMax scaler [4] or automatically inside the 
models using batch normalization technique [5].     

• An Imputation transformer was used for completing missing 
values by replacing missing values with the mean along each 
column. Replacing missing values with zeros also achieved 
similar improvements to the model stability. 

A summary of the data used for training and validation is shown 
in Table 1. Each frame contains 250 samples as explained above. 
  

Table 1: Data used for training and validation. 
Training dataset 841866 frames (full training dataset plus 

50% of the validation dataset) 
Validation 
dataset 

57578 frames (50% of the validation set) 

Exploration 
training dataset 

235286 frames (30% of the training set) 

Exploration 
validation dataset 

34546 frames (30% of the validation 
dataset) 

 
2.2   Feature Engineering 
For better performance, feature engineering is an important step 
for activity recognition tasks. Although some deep learning 
architectures can automatically extract useful features from raw 
data. We were able to achieve better results by calculating more 

features and calibrating the existing ones. For example, we have 
manually calculated the following eight extra features from the 
existing raw sensor data: 

• Five features representing the magnitude (𝑚 =
"𝑥2 + 𝑦2 + 𝑧2) of the three axes of the acceleration, gravity, 
gyroscope, linear acceleration, and magnetometer.  

• Three features, namely pitch, roll, and yaw calculated from 
the orientation sensor, represent the Euler angles [6]. The 
Euler angles are better features because they have more real-
world meaning compared to the quaternions. They were 
calculated from the orientation data quaternions 
[𝑞𝑤,𝑞𝑥,𝑞𝑦,𝑞𝑧] as shown below. 

pitch = 𝑎𝑟𝑐𝑡𝑎𝑛	(
2(𝑞𝑤𝑞𝑥 + 𝑞𝑦𝑞𝑧)

1 − 2(𝑞𝑥𝑞𝑥 + 𝑞𝑦𝑞𝑦)
)

𝑟𝑜𝑙𝑙 = 𝑎𝑟𝑐𝑠𝑖𝑛	(2(𝑞𝑤𝑞𝑦 − 𝑞𝑧𝑞𝑥))

𝑦𝑎𝑤 = 𝑎𝑟𝑐𝑡𝑎𝑛	(
2(𝑞𝑤𝑞𝑧 + 𝑞𝑥𝑞𝑦)

1 − 2(𝑞𝑦𝑞𝑦 + 𝑞𝑧𝑞𝑧)
)

 

Additionally, we used the tsfel library [7] to auto-generate some 
statistical, spectral, and temporal features. Using this library was 
too slow using the available computing power shown in Table 2; 
therefore, we tested this only on a small exploration dataset, 
which showed promising results. For the given reason, these 
features were not used to produce the final model. A very 
important step was to re-orient the acceleration, magnetometer, 
and linear acceleration data from the body frame to the North-
East-Down (NED) coordinates [8]. It helped in dealing with the 
location independent requirement and showed a big performance 
increase. 
 

Table 2: Available computing power. 
Processor Intel Core i7-7800X, 3.50GHz, 

3504 MHz, 6 Cores 
Physical Memory (RAM) 32.0 GB 
Disk Samsung SSD 970 EVO 500GB 
GPU NVIDIA GeForce RTX 2080 Ti 

 
2.3   Feature Selection 
We performed feature selection by running a random search 
against multiple configurations to understand the usefulness of 
certain features combinations. By doing this, we found the 
following observations: 

• Orientation, pressure, and gravity raw sensor data were not 
so useful but rather caused overfitting.  

• Acceleration and linear acceleration data were the most 
influencing features in the results.    

• The extra eight manually calculated features contributed 
positively to the model performance; however, it was not a 
big improvement. With these features, we noticed an 
increase of approximately 3-5 % in the total F1 score against 
the exploration dataset.  

In the end, we decided to use only acceleration, linear 
acceleration, gyroscope, and magnetometer raw sensor data to 
produce the final model. The reason why we skipped the manual 
features was also in favor of using deeper deep learning 
architectures that produced better performance. We tried to use 
as minimum features as possible to be able to fit these deeper 
architectures into the available memory and speed up the training 
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process to iterate faster.  The final selected features are shown in 
Table 3. 

Table 3: List of selected features. 
Feature Type Selected? 
linear acceleration (x, y, z) Raw Yes 
Gyroscope (x, y, z) Raw Yes 
Magnetometer (x, y, z) Raw Yes 
Acceleration (x, y, z) Raw Yes 
Orientation (x, y, z, w) Raw No 
Gravity (x, y, z) Raw No 
Pressure Raw No 
Yaw Calculated No 
Roll Calculated No 
Pitch Calculated No 
Linear acceleration magnitude Calculated No 
Acceleration magnitude Calculated No 
Gravity magnitude Calculated No 
Gyroscope magnitude Calculated No 
Magnetometer magnitude Calculated No 

 
We have also performed the following experiments, but they did 
not impact the final submitted model: 

• We identified and removed any transition frames. Transition 
frames are any frame that contains more than one label. We 
did not notice any performance increase after the removal. It 
is because the number of transition frames were 
insignificant, around 2300 frames, and had no impact on the 
results.   

• We tried identifying and removing any outliers. We 
identified this by analyzing outliers within every location 
and every class. For example, we analyzed the data coming 
from the bag location and removed the outliers within every 
activity. We assumed that outliers could happen because 
people can sometimes perform the same activity in the 
wrong way. The outliers were detected using a Z-score 
outlier technique [9]. However, we did not see any major 
improvements after the removal of the outliers.  

• Under the assumption that time-series data usually contains 
a high degree of correlation, we tried reducing any data 
correlation between the features. It turned out also not to 
help increase performance.   

• We tried selecting the top features using tree-based 
algorithms, which can reduce the noise in the data by 
selecting only the important features. We achieved this by 
selecting various top features; however, we noticed a 
performance drop due to this technique. 

• We tried multiple auto feature engineering techniques using 
open source libraries such as tsfel [7], tsfresh [10], and sktime 
[11]. It was difficult to run these techniques for the full 
dataset due to the limited access to enough compute power 
to get the results in a timely manner. Therefore, we tried this 
on a very small exploration dataset. However, it is difficult to 
assess the usefulness of adding these extra features without 
evaluating it on a larger part of the data. 

 
3   ALGORITHM SELECTION 
In the beginning, we explored some traditional machine learning 
algorithms on a small subset of the dataset such as random forest, 
KNN, a bag of decision trees, SVM, gradient boosting, xboost, and 

Naïve Bayes. However, due to the following reasons, we focused 
our efforts on deep learning models:  

• With the available compute power, it was difficult to 
experiment with the full dataset using traditional machine 
learning algorithms since it was so slow. 

• Extracting manual features is very important to get 
meaningful results with these classifiers, which requires time 
and domain experience.   

 
Therefore, we run experiments manually in various deep learning 
architectures that are popular for solving time series classification 
problems such as CNN, LSTM, ConvLSTM, and CNN-LSTM 
architectures. The models were manually built using Keras, and a 
random search was performed against their hyper-parameters. A 
multi-headed version of all these models was also tested. A multi-
headed model consists of multiple heads. Each model head reads 
the input time steps using a kernel of different sizes. For example, 
a three-headed model can have three kernel sizes of 3, 5, 11, 
allowing the model to read and interpret the sequence data at 
three distinct resolutions. The prediction from all heads are then 
merged within the model, and then interpreted by a fully 
connected layer before making a prediction.   
  
Later on, we used an open-source library called mcfly [12], which 
is a library aimed at facilitating the use of deep learning for time 
series classifications tasks. The library was used to perform a 
random search over the hyperparameter spaces for some deep 
learning classifiers, as will be explained later. The following are 
some common facts in all the experimented models:  

• We used a LeCun Uniform Weight initialization. 
• L2 regularization on all convolutional and dense layers is 

selected. 
• A categorical cross-entropy loss is utilized.  
• F1 score was the performance measure to select the best 

model.  
  
Using mcfly, we ran more than 290 experiments based on CNN, 
InceptionTime, and Resnet architectures. The summary is shown 
in Table 4. The summary of the achieved performance in the 
training and validation datasets across all the experiments is 
shown in Figure 1.   
 

Table 4: Number of experiments per model type. 
InceptionTime 260 experiments 

ResNets 20 experiments 
CNN 10 experiments 
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Figure 1: Performance achieved on all the experiments 

against the training and validation datasets. 
 
3.1   CNN Experiments  
We used a convolutional neural network that has been shown to 
produce state-of-the-art results with little to no feature 
engineering on complex activity recognition tasks, rather than 
using feature learning on raw data. This model's hyperparameters 
include 1) number of Conv layers, 2) the number of filters in each 
Conv layer, and 3) the number of neurons in the hidden Dense 
layer. The results were not so promising due to the difficulties in 
the datasets. Having a subject and location independent model is 
a challenging task since we train on only a single subject. It makes 
it hard for the model to generalize. The results are shown in 
Figure 2.  

 

 
Figure 2: Performance achieved on the CNN models 

against the training and validation datasets. Each model 
with different number of nodes for the fully connected 

layers.  

 
3.2   ResNets Experiments 
Residual Networks (ResNets) [13] has been very successful in 
object detection and other vision-related tasks. ResNets has 
alleviated the problem of training very deep neural networks by 
introducing a linear short-cut connection as part of a residual 
block. The residual connection increases the model’s accuracy by 
solving the vanishing or exploding gradients problem that 
happens in the very deep layers of a neural network.  We 
evaluated the use of multiple variants of ResNets by changing 
network depth, the number of filters, and kernel sizes. The 
network depth represents the total number of residual blocks that 
are connected, followed by a final softmax layer having a number 
of neurons equal to the number of activities to be classified. Every 
residual block consists of a set of convolutions with a configurable 
number of filters and kernel size. We ran around 20 experiments 
on the full training and validation datasets. The best model of this 
type achieved an F1 validation accuracy of 67 %, as can be seen in 
Figure 3.   

 

Figure 3: Performance achieved on the ResNets models 
against the training and validation datasets. Each model 

with different filter kernel size. 

The maximum network depth we were able to achieve with 
available hardware was 18 layers. We observed an increase in the 
accuracy with the increase of the network depth, as seen in 
Figure 4.The figure shows a subset of the ResNet experiments and 
we can see that deeper networks architectures are performing 
better. 
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Figure 4: The average performance per network depth 
using ResNets models. 

 
3.3   InceptionTime Experiments 
InceptionTime is a recent model architecture specialized in time-
series classification tasks [14]. It is an ensemble of a set of 
inception networks where each is created by cascading various 
Inception modules [15]. Inception modules consist of multiple 
convolutional filters with various lengths that are applied 
simultaneously to extract features from the input time series data. 
Every inception network also contains two different residual 
blocks, and every residual block consists of three inception 
modules. Every residual block’s input has a residual skip 
connection to the next block’s input to mitigate the vanishing or 
exploding gradients problem that occurs in very deep neural 
networks.  Most of the experiments were conducted using this 
architecture since it showed promising results from the 
beginning. We have performed around 260 experiments by 
playing with the network depth, the number of filters, and the 
kernel sizes. A summary of a subset of the experiments using 
InceptionTime is summarized in Figure 5. 

 

 

 
Figure 5: Performance achieved on the InceptionTime 

models against the training and validation datasets. Each 
model with different filter kernel size 

 
 
We tried multiple network depths and observed that deeper layers 
could improve accuracy, as shown in Figure 6. It is shown that 

the best performance was achieved on layer 26, which is the 
deepest layer we were able to test using the available compute 
power. 

 

 
Figure 6: The average performance per network depth 

using InceptionTime models. 
 
3.4   Final Selected Model 
The final model used to predict the test dataset is based on 
InceptionTime and has the parameters in Table 5. Figure 7 shows 
an overview of the complete process including data 
preprocessing, training, and testing phases. The model 
architecture of the final model is also shown in Figure 7. The 
model consists of a total of 3 inception blocks or ensembles each 
contains 3 inception modules and a final dense layer with a 
softmax activation. For more details about the InceptionTime 
architecture concepts, please refer to section 3.3. It is shown from 
the results that the residual skip connections helped in achieving 
better accuracy with deeper layers. 

 
Table 5: The final model hyperparameters. 

Learning rate 0.00057 
Regularization rate 0.0135 
Network depth 10 
Filter number 33 
Kernel size 97 

 

 
Figure 7: An overview of the complete process including 

data preprocessing, training, and testing phases. 
 
We were able to achieve the results shown in Table 6 against the 
validation dataset. The results also showed that the model 
extracted features aren’t enough to distinguish between similar 
activities such as recognizing a user being in a train or being in a 
subway, as shown in Figure 8. 
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Table 6: The final model results against validation dataset.  
Accuracy 0.7935 
Precision 0.8304 
Recall 0.7615 
F1 score 0.7939 

 
 

 
Figure 8: The confusion matrix of the final model 

according to the validation dataset results. 
 

4   DISCUSSION 
• Feature extraction is a hard problem because of the inter-

activity similarities; different activities might have similar 
characteristics, which makes it difficult to extract 
distinguishable features.  

• Activities are person dependent; every person has his way of 
performing the same activity. It makes it difficult to 
generalize to multiple users if the training involves only a 
single subject.  Besides the hardware and location 
differences, people also perform activities differently. It is a 
hard problem to train a model in a single subject and expect 
it to generalize.   

• Having deep models with more layers helped in extracting 
and learning useful features and showed performance 
improvements. However, there is a limit on how much 
deeper we can try due to data and computer power 
limitations. The available compute power is shown in Table 
2. For example, the maximum network depth, we were able 
to test using the InceptionTime architecture, was 10 before 
we got out of memory errors.  

• Getting access to more compute power to do more 
experiments and iterate faster is very beneficial. Due to the 
size of the dataset, most experiments took a lot of time with 
the available hardware especially the auto feature generation 
using frameworks such as tsfel, tsfresh, and sktime. We 
believe adding the auto-generated features for the full dataset 
would have improved the performance.  

 
5   CONCLUSION 
The SHL locomotion challenge provides a unique chance and a 
very interesting dataset for locomotion activity recognition. In 
addition, recognizing locomotion activities in a user and location 
independent manner is very challenging. Our approach was to 
focus on some state-of-the-art deep learning models which proved 
to show promising results in the activity recognition and times 

series classification problems. We mostly experimented with 
CNN, ResNets and InceptionTime architectures by trying multiple 
hyperparameters such as the network depths, the number of 
neurons of dense layers, convolutional filter numbers and kernel 
sizes.  The best model is based on the InceptionTime architecture 
and achieved 79% F1 score on the validation set. This model 
generalized well regardless of the user or the smartphone location. 
It was shown also that data preparation, and preprocessing is a 
critical part to increase the model performance. The recognition 
result for the testing dataset will be presented in the summary 
paper of the challenge [16]. 
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