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ABSTRACT
This paper describes our submission as Team-Petrichor to the
competition that was organized by the SHL recognition challenge
dataset authors. We compared multiple machine learning approach
for classifying eight different activities (Still, Walk, Run, Bike, Car,
Bus, Train, Subway). The first step was feature engineering, a wide
set of statistical domain features were computed and their quality
was evaluated. Finally, the appropriate machine learning model
was chosen. The recognition result for the testing dataset will be
presented in the summary paper of the SHL recognition challenge.

CCS CONCEPTS
• Computing methodologies→ Activity recognition and un-
derstanding; Supervised learning by classification.
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1 INTRODUCTION
Human activity recognition aims to identify activities based on data
collected by sensors [2]. It is one of the growing research areas that
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meet application demands, such as mobile computing, surveillance-
based security, context-aware computing, and assistive living [1].
One of the difficulties facing this type of research is that each re-
search group uses its own datasets and their own recognition tasks,
making it hard to compare methodologies to advance research in
this field [8, 11]. The literature shows that it is possible to use su-
pervised machine learning and deep learning methods to recognize
the human activity [3, 5]. The SHL recognition challenge makes
comparing methodologies easier by providing unified datasets to
competitors. The main goal of this SHL recognition challenge is to
develop a methodology to recognize eight locomotion and trans-
portation activities (Still, Walk, Run, Bike, Bus, Car, Train, Subway)
from the inertial sensor data of a smartphone [8, 11].

The 2020 SHL recognition challenge is mainly focused on rec-
ognizing modes of transportation in a user-independent manner
with an unknown phone position. The goal was to recognize the
user transportation (activities) from data coming from the phone
of the “test” user while the location of that phone on the “test” user
is not specified. For the training data, the four phone positions for
a “train” user is given. Also, a small "validation" dataset is provided,
which includes data from the “test” user and all the four possible
phone locations on the test user.

Our submission (team name: Petrichor) proposes a machine
learning model to predict the transportation modes using feature
engineering on the given raw sensor data as input. We did compare
multiple machine learning models and used the one that has higher
accuracy. We also had results with higher accuracy when using a
voting classifier for three machine learning algorithms, which are
Random Forest, Gradient Boosting and Gaussian Naive Bayesian.

2 DATASET AND TASK
The source of dataset for this SHL recognition challenge is the
Sussex-Huawei LocomotionDataset [4, 10]. This dataset was recorded
by three participants in 8 transportation and locomotion activities
which are: Still, Walk, Run, Bike, Car, Bus, Train, and Subway. Each
participant carried four smartphones at four body positions in-
dependently, and the position of the phone is was unknown to
them. This dataset contained train, validate, and test subsections.
The train, validation and test data was generated by segmenting
the whole data with a non-overlap sliding window of 5 seconds.
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The raw data for this dataset is from acceleration, gravity, rate of
turn, linear acceleration, magnetic field, orientation of the device in
quaternions, atmospheric pressure, and activity classes. The sam-
pling rate of all the sensors is 100 Hz. The goal (task) is to recognize
8 modes of locomotion and transportation (activities) from the in-
ertial sensor data of a smartphone. This is done by recognizing the
user activity of data coming from the phone of the “test” user, that
is the combination of user 2 and 3.

The number of days used for training data was 59, for the valida-
tion data 6 days and for test data 40. The frames for the train data
are consecutive in time (196072 lines x 500 columns). Training data
is provided for "train" user (user 1), of all the 4 phone positions (bag,
hips, torso, hand), one of them will be identical to the "test" user,
and the "validation" is provided. This includes data from the “test”
user and all the 4 possible phone locations on the test user. The
validation data is extracted from the already released preview of the
SHL dataset (28789 lines x 500 columns). The test data (57573 lines
x 500 columns) contains the raw sensors data from the other two
users (2 and 3), and one phone location (unknown to the partici-
pants), with the same files as the train dataset but no class label, this
is the data on which Machine Learning predictions has been made.
The frames have been shuffled, so that the real time performance
of the classification can be challenged.

3 METHOD AND EXPERIMENTS
Feature extraction has been done to reduce high dimensionality
of the data. Feature extraction is done by using various methods,
such as taking the mean, standard deviation (STD) and mean abso-
lute deviation (MAD). Finally, a model is created through machine
learning techniques. After training the model, our model will be
evaluated in the validation phase and an estimate is provided about
the effectiveness of its performance. The accuracy of the model
on testing data will be shared in summary publication of the SHL
recognition challenge. Below, our approach to feature extraction
and machine learning is discussed.

3.1 Data Processing
Each file contains 196072 lines x 500 columns, corresponding to
196072 frames each containing 500 samples (5 seconds at the sam-
pling rate 100 Hz). Each file in the validation data contains 28789
lines x 500 columns, corresponding to 28789 frames each containing
500 samples (5 seconds at the sampling rate 100 Hz). To keep data’s
original frame size, all sensor files have 500 columns. Any missing
or inappropriate values were not detected in dataset.

For every feature, label.txt file indicates activity mode for every
sensor data. This means 500 samples has 500 labels, respectively.
Most of the rows in label.txt file has all identical values across one
row meaning the user did not change transportation-locomotion
mode in 5 seconds. Some rows had multiple values meaning user
changed transportation-locomotion mode in 5 seconds. Frames
(rows in label.txt file) which changes transportation mode during
5 seconds (500 sample) were removed from the dataset. In total,
we ignored 0,296% of (581 row) of training data and 0,361% (104
row) of validation data. Thus, our prediction model only focus on
continuous activities within the same frame. Since all the samples

in the same frame have the same activity, we reduced these 500
labels in one row to one label.

Figure 1: Distributions of the activities in the SHL preview
train dataset.

Figure 2: 1 frame 500 sample (a:Walk, b:Bike, c:Bus, d:Train)
data frequency overview for Acceleration (Acc).

3.2 Feature Extraction
Human activities are carried out for relatively long periods (in sec-
onds or minutes) compared to the sampling rate of the sensors. A
single instance at a given moment does not provide enough infor-
mation to describe the activity performed. It is almost impossible
for the incoming signals to be exactly same as the actual performed
movement. For this reason, the activities should be evaluated as a
whole, not as an individual data sample. Statistical and structural
approaches are preferred approaches for extracting features from
time series data [7].

SHL dataset sampled at 5 seconds and 100 Hz sampling rate. Each
dataset (train, validation,test) contains 500 samples and varying
number of frames. The distribution of the activities for in the SHL
training dataset is shown in Figure 1. All techniques are designed
to support the high variability of the signals.

Feature extraction was performed by calculating the mean, Mean
Absolute Deviation (MAD), Standard Deviation (STD), and mini-
mum and maximum value of each 500 samples for every row. These
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methods were used to reduce high dimensionality, and also to make
the prediction algorithm sensitive to the spread of the data. Mean
calculations occur in a dataframe by summing up each row sample
value and dividing it to the column number. This mean operation
is an efficient method to express average sensor value for each row
(500 samples). Mean absolute deviation was calculated for SHL data
to get insight to distinguish the activity modes with the positive
average distance between each data and the mean in each row. If
any user does different activities, collected data frequencies will be
different from each other when with accelerometer, gyroscope, etc.,
in each frame as it is illustrated in Figure 2.
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Standard deviation was calculated to see how the data is spread
out for each frame as seen in Equation 1. Minimum and maximum
values were added into the dataframe so it can be used when sum-
marizing the 500 columns into five features: the Mean (Equation 3),
MAD (Equation 2), STD (Equation 1), Min, and Max values. As a
result, we have five features for each sensor data files ( Acc𝑥 , Acc𝑦 ,
Acc𝑧 , Gra𝑥 , Gra𝑦 , Gra𝑧 , Gyr𝑥 , Gyr𝑦 , Gyr𝑧 , Mag𝑥 , Mag𝑦 , Mag𝑧 ,
LAcc𝑥 , LAcc𝑦 , LAcc𝑧 , Ori𝑤 , Ori𝑥 , Ori𝑦 , Ori𝑧 , Pressure). As we have
four smartphones (Bag, Hand, Hips, Torso) in different locations,
all calculation processes are done for every phone’s sensor data.
Overall, 400 statistical features were extracted from the raw data (5
features for each 20 types of data).

Table 1: Feature extraction methods applied to the data

Torso/ Hips/ Bag/ Hand
Acc-X,Y,Z Mean, Std, Min, Max, Mad
Gyr-X,Y,Z Mean, Std, Min, Max, Mad
Gra-X,Y,Z Mean, Std, Min, Max, Mad
Mag-X,Y,Z Mean, Std, Min, Max, Mad
LAcc-X,Y,Z Mean, Std, Min, Max, Mad
Ori-W,X,Y,Z Mean, Std, Min, Max, Mad
Pressure Mean, Std, Min, Max, Mad

Table 1 summarizes the feature extraction methods for accel-
eration (Acc), gravity (Gra), rate of turn (Gyr), linear acceleration
(LAcc), orientation of the device in quaternions (Ori), and atmo-
spheric pressure (Pressure) signals. These feature extraction meth-
ods applied to the data for each phone position to be used in ma-
chine learning models. They are applied for training, validation,
and testing data.

3.3 Classification Algorithms
The recent development of sensor devices has simplified the data
collection process. However, discovering information requires more
effort than merely collecting data. Information discovery is very
important in sensor data, and raw data is often useless for this step.
Therefore, HAR systems make use of machine learning tools that

are helpful in building patterns to describe, analyze, and predict
data. Since a human activity recognition system should return
a label such as walking, running; most HAR systems work in a
supervised fashion. In a machine learning context, patterns are
to be discovered from a set of given examples or observations
denominated instances. Supervised learning is one of the critical
fields, bringing a great number of algorithms that have been used
in Human Activity Recognition. Most classifiers are capable of
learning complex class structures.

Random Forest, Gradient Boosting, Gaussian Naive Bayesian
methods gave the best accuracies during our implementation. There-
fore we decided to use a Voting classifier to combine them. The
main purpose of the Voting Classifier is to merge conceptually
different machine learning classifiers and use a majority vote or
the average predicted probabilities (soft vote) to predict the class
labels [6]. Figure 3 depicts the soft voting system. The calculation
for smart voting is shown in Equation 4, where P is the predicted
probability for each classifier c [6]. Such a classifier is useful for
models that have equally well performing results to balance out
their individual weaknesses.

Figure 3: Schematic diagram of our voting system.
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4 RESULTS
In this section, we briefly show the results of themost successful Ma-
chine Learning models. All supervised machine learning algorithms
are implemented and the methods with the highest accuracies are
selected.

Python programming language was used at every stage of the
study. Pandas, numpy, ggplot libraries were used for data related
operations. In addition, we ran all machine learning calculation
experiments with the scikit-learn library. We used a dual processor
machine with 16 cores and 256GB of RAM for computation. We
have saved the trained model of 410 MB size on the hard disk and
it takes approximately 3.36 hours to train the model. It took to
evaluate the test dataset approximately 3.06 seconds.

Figure 4 shows validation accuracies in different scenarios, where
we used different modalities. These results were achieved before
the merging of validation and training data, only train data is used
for training. We started training our model with only two modali-
ties which are Acceleration and Gyroscope. After getting our first
accuracy, we continue adding modalities to observe model perfor-
mance. Adding all sensor modalities made improvement in model
performance except Ori files (Ori𝑤 ,Ori𝑥 ,Ori𝑦 ,Ori𝑧 ). So, we decided
not to include Ori sensor data in any part of the training phase.

When using only the training set for model training, we achieve
an accuracy of 61.2%with the validation set. Themodel performance
has been improved effectively by incorporating the validation data
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Figure 4: Validation accuracy based on used modalities.

Table 2: The success rates before and after merging of vali-
dation data with test data.

Train Set Validation Set Random Forest Classifier Gradient Boosting Classifier
Train Validation (100%) 61% 63%

Train + Validation (20%) Validation (80%) 73% 71%

for model training. We took 20% of validation data into training
data to evaluate the improved accuracy score. An equal number
of samples from each locomotion-transportation mode category
were taken from validation data to avoid overfitting. Rest of the
validation data is used for testing the model. When both the training
data and some part of the validation data is used for model training,
we achieve an accuracy of 73% as it is shown in Table 2.

Table 3: Machine learning models success rates.

Machine Learning Model Validation
Accuracy

Validation
Precision

Validation
Recall

Validation
F1 Score

Voting System
(Random Forest + Gradient Boosting + Gaussian NB) 73% 74% 66% 68%

Voting System
(Random Forest + Gradient Boosting + Decision Tree) 71% 74% 63% 64%

Random Forest 73% 74% 65% 65%
Gradient Boosting 71% 70% 66% 68%

Gaussian Naive Bayes 53% 59% 48% 50%
AdaBoost 47% 47% 50% 47%

After both the training and validation set is used for model train-
ing, model accuracy, precision, recall, and F1, scores are calculated
as shown in Table 3. As can be seen in the table, the most successful
machine learning algorithms are Random Forest, Gradient Boosting
and Gaussian Naive Bayesian. Therefore, we used those algorithms
in the voting classifier system. The ensemble model takes advan-
tage of the different algorithms and yields better performance than
a single one. Voting classifier can be a good choice when a single
strategy is not capable of reaching the desired accuracy. Voting sys-
tem is used for combining the predictions from multiple machine
learning algorithms and performance improvement.

The confusion matrix of our model is presented in Figure 5. Our
model can classify still, bike, walk, and car activities better than the
other categories. We believe this is because the other activities are
considered to have faster movement; thus they have similar sensor
patterns.

5 CONCLUSION
We recognized the locomotion and transportation modes of user
activity from the inertial sensor data of a smartphone by using

Figure 5: Confusion matrix of voting system prediction.

supervised Machine Learning models with the Sussex-Huawei Lo-
comotion Dataset. Random Forest, Gradient Boosting, and Gauss-
ian Naive Bayesian algorithms performed the best between the
developed models. We used these models with the Voting System
(Classifier). Our findings show that activities which have slower
movement are better recognized by our model. Finally, recognition
result for the testing dataset will be presented in the summary paper
of the SHL recognition challenge [9].
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