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ABSTRACT
An activity recognition method developed by Team DSML-TDU for
the Sussex-Huawei Locomotion-Transportation (SHL) recognition
challenge was descrived. Since the 2018 challenge, our team has
been developing human activity recognition models based on a
convolutional neural network (CNN) using Fast Fourier Transform
(FFT) spectrograms from mobile sensors. In the 2020 challenge, we
developed our model to fit various users equipped with sensors in
specific positions. Nine modalities of FFT spectrograms generated
from the three axes of the linear accelerometer, gyroscope, and
magnetic sensor data were used as input data for our model. First,
we created a CNN model to estimate four retention positions (Bag,
Hand, Hips, and Torso) from the training data and validation data.
The provided test data was expected to from Hips. Next, we created
another (pre-trained) CNN model to estimate eight activities from
a large amount of user 1 training data (Hips). Then, this model
was fine-tuned for different users by using the small amount of
validation data for users 2 and 3 (Hips). Finally, an F-measure of
96.7% was obtained as a result of 5-fold-cross validation.

CCS CONCEPTS
• Human-centered computing → User models; • Computing
methodologies → Machine learning.
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1 INTRODUCTION
Activity recognition from sensors has been gaining attention from
various research communities. Our team DSML-TDU has partici-
pated in the SHL Transportation recognition challenge since 2018
[4][5]. Sussex-Huawei Locomotion-Transportation (SHL) dataset
includes sensor information such as acceleration, gyro, and mag-
netic sensors obtained by a smartphone terminal carried by hand,
at the hips, on the torso or in a bag during locomotive activities
such as still, walking, running, and biking, as well as riding a car,
bus, train, and the subway. The objective of the 2020 SHL recogni-
tion challenge was to identify eight different movement states of
different users.

In this paper, we propose a recognition method that applies a
convolutional neural network (CNN) model, a well-known tech-
nique for image recognition. In the field of human activity sensing,
an example of generating spectrograms from microvibrations prop-
agating through the user’s arm and infering the user’s context using
a CNN model has been reported [7]. In our previous challenge in
2019, we developed a CNN application with Fast Fourier Trans-
form (FFT) spectrogram using acceleration and data from a gyro
sensor mounted on a subject’s bag, hips, and torso. In this 2020
challenge, our models were developed to fit various users equipped
with sensors in specific positions.

2 SHL DATASET AND TASK
The SHL dataset was collected primarily to investigate the recog-
nition of users’ means of locomotion and transportation from mo-
bile phone sensors using machine learning methods and heuristics
[1][10]. This versatile annotated dataset of mobile users’ means of
locomotion and transportation was recorded over a seven-month
period in 2017. Three participants engaged in eight different modes
of transportation in a real-life setting in the United Kingdom. The
dataset contains 750 hours of labeled locomotion data: Car (88 h),
Bus (107 h), Train (115 h), Subway (89 h), Walk (127 h), Run (21
h), Bike (79 h), and Still (127 h). Multi-modal data was captured by
a body camera and four smartphones (HUAWEI Mate 9) carried
simultaneously at areas of the body where a phone is typically held
(in hand, torso, hips, and in a bag). All sensor data consists of the
following: accelerometer (x, y, z), gravity (x, y, z), gyroscope (x, y,
z), linear accelerometer (x, y, z), magnetometer (x, y, z), orientation
(quaternions), and pressure.

The SHL Challenge 2020 was carried out using part of the SHL
dataset. The goal of the challenge for machine learning/data science
was to recognize eight modes of locomotion and transportation
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from a mobile phone’s sensor data. The dataset used for this chal-
lenge comprised 59 days of training data for one user (user 1), six
days of validation data for two other users (users 2 and 3), and 40
days of test data for the latter two users. Both the training and
validation datasets had sensor location information, while the test
dataset did not.

The participants of the challenge were requested to develop an
algorithm pipeline to process the sensor data, create models, and
output the recognized activities.

Our approach was to identify the state of movement using the
valid classifier model for the retention position after identifying the
retention position of the terminal (section 5). Due to insufficient
validation data (users 2 and 3) for predicting the test data (users 2
and 3), we created a pre-learning model using the training dataset
and fine-tuned using the validation data in order to create a model
more suitable for predicting test data (section 6).

3 PREPROCESSING
First, any data containing gaps or transitional states within the
provided five-second segments were omitted. Information from the
three sensors (linear acceleration, gyro, and magnetic sensor) were
used in our solution. We accounted for the shaking of the smart-
phone due to the difference in holding position and movement state
which appeared in the acceleration and gyro. Wang [10] suggested
that combining magnetic sensor can improve performance. We
pre-processed the three sensors with the following.

Step 1. We calculated each Euclidean norm from the three axes
of the linear acceleration, gyro, and magnetic sensor.

𝑚 =

√
𝑥2 + 𝑦2 + 𝑧2 (1)

Step 2. We used the mean and standard deviation of user 1 to
standardize the training data, and we standardized the validation
data and test data using the mean and standard deviation of users
2 and 3.

Step 3. After standardizing the sensor data, all axes of the linear
acceleration, gyro, and magnetic sensor data were transformed into
an FFT spectrogram. As reported in previous challenges papers
[4][5], the spectrogram representation was used as the input for
activity recognition models. Spectrogram for the data (5-second du-
rations at 100 Hz) were obtained with a 2.5-second sliding window
(256 data points / 10 sampling point overlap). Example images are
shown in Figure. 1.

4 CNN MODEL FROM FFT SPECTROGRAM
Next, we describe the overall architecture of our CNN which is
shown in Figure. 2. The input data is an FFT spectrogram from the
5-second sensor data. The three convolutional layers are followed
by three fully connected layers. The first convolutional layer takes
the resized 128 × 25 spectrogram and applies sixteen 5 × 5 filters
with a zero-padding of 1. This is followed by a Rectified Linear
Unit (ReLU) function and max-pooling, resulting in a 64 × 12 image
volume. The second convolutional layer takes the 64 × 12 image
volume and applies thirty-two 5 × 5 filters with a zero-padding of 1.
This is followed by a ReLU function and max-pooling, resulting in
a 32 × 6 image. The third convolutional layer takes the 32 × 6 image
volume and applies sixty-four 5 × 5 filters. This is followed by a

Figure 1: Example of spectrogram

Figure 2: CNN model

ReLU and max-pooling, resulting in a 14 × 1 image volume. The
remaining two layers are fully connected layers. The first reduces
the size of the image to 1024 and then applies a ReLU. The second
reduces the size to 128 and then applies a ReLU. The third reduces
the size to 8 and then applies a Softmax function. The conditions
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for learning are as follows, epoch: 37, batch size: 128, iteration:
17.9. We used TensorFlow’s Keras API as a backend in the Python
environment for training. Most of the components of our network
model are available in recent deep learning frameworks.

Although we also considered at deeper-structured CNN mod-
els, such as ResNet [2][3] and VGG [8], they did not show any
improvement in accuracy despite the long training time.

5 RETENTION POSITION ESTIMATION
Since the retention position of the challenge test data is unknow,
we first created the estimation model for retention position using
our CNN model. In this section, we did not use Mag_norm; we only
used spectrograms generated from Acc_norm and Gyr_norm as
input. We considered that magnetic sensors, which are influenced
by the surrounding environment rather than the user’s movements,
help classify vehicles but do not contribute to classifying retention
positions.

The retention position was labeled for the data measured from
each position (Bag, Hand, Hips, and Torso). Classification was per-
formed using this label as an objective variable.
Then we trained on user 1’s training data using the CNN model in
(section 4). The estimation results for the validation data of user 2
and 3 are shown in Figure 3 and Table 1 respectively.

Finally, we estimated the retention position for challenge test
data from the same two users and verified that 99% of the data was
measured from Hips.

6 STATE ESTIMATION
Given the results of the estimated retention position in the previous
section, we decided to use only Hips data for training and validation
data to create the model for estimating the state of movement.

In this section, three sensors (LAcc, Gyro, andMag) were used for
discrimination. Here, by our preliminarily testing, the recognition
rate with using all single axes of sensors were better than one
with Euclidean norm data described in section 3 (data not shown).
Also, we have known the North-East-Down (NED) coordination
system of sensor axes works well on activity recognition based on
the report on previous challenge result [6]. So, the transformed
each sensor axes data was pre-processed according to Steps 2 and
3 in section 3. The coordination conversion to NED system was
performed by multiplying the smartphone coordinate system data
with the rotation matrix 𝑅𝑁𝐵 .[

𝑥

𝑦

𝑧

]
𝑁

= 𝑅𝑁𝐵

[
𝑥

𝑦

𝑧

]
𝐵

(2)

Here, 𝑅𝑁𝐵 was given with quaternions [𝑞𝑤 , 𝑞𝑥 , 𝑞𝑦, 𝑞𝑧] as followed,

𝑅𝑁𝐵 =


1 − 2(𝑞2𝑦 + 𝑞2𝑧 ) 2(𝑞𝑥𝑞𝑦 − 𝑞𝑤𝑞𝑥 ) 2(𝑞𝑥𝑞𝑧 + 𝑞𝑤𝑞𝑦 )
2(𝑞𝑥𝑞𝑦 + 𝑞𝑤𝑞𝑧 ) 1 − 2(𝑞2𝑥 + 𝑞2𝑧 ) 2(𝑞𝑦𝑞𝑧 − 𝑞𝑤𝑞𝑥 )
2(𝑞𝑥𝑞𝑧 − 𝑞𝑤𝑞𝑦 ) 2(𝑞𝑦𝑞𝑧 + 𝑞𝑤𝑞𝑥 ) 1 − 2(𝑞2𝑥 + 𝑞2𝑦 )

 . (3)

Training was performed by inputting 9-axis FFT spectrograms
into the CNN model described in Section 4. First, we trained the
model on the user 1 training data. The average F-measure was 67.9%
when this model was evaluated using validation which comprised
data for users 2 and 3. The confusion matrix and classification
report are shown in Figure 4 and Table 2 respectively.

Next, this pre-learning model was fine-tuned using the data on
user 2 and 3 (validation dataset), resulting in an average F-measure
of 96.7%. Cross validation was performed by dividing the Validation

Figure 3: Confusion matrix of sensor location (The colored
bar shows the ratio when the sum of each line is 1.)

Table 1: Estimation of retention position

Retention position F-measure Precision Recall
Bag 0.8037 0.7336 0.8887
Hand 0.9917 0.9955 0.9879
Hips 0.9997 0.9998 0.9997
Torso 0.7674 0.8655 0.6892

Figure 4: Confusion matrix of pre-trained model (The col-
ored bar shows the ratio when the sum of each line is 1.)

Table 2: F-measure for each activity determined by pre-
trained model

Activity F-measure
Still 0.8418±0.0043
Walk 0.8524±0.0167
Run 0.7220±0.0253
Bike 0.6717±0.0979
Car 0.4686±0.0772
Bus 0.6385±0.0302
Train 0.5918±0.0415
Subway 0.6419±0.0380
macro avg 0.6786±0.0272

data into five parts, the results of which are shown in Figure 5 and
Table 3 respectively.

7 SUBMISSION RESULTS
The result of our retention position estimation indicated that 99.9%
of the test data was estimated to be measured from Hips. Only the
data measured from Hips was used for training for model creation.
The model that learned the training data had an F-measure of 67.9%
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Figure 5: Confusionmatrix of transfer learning (The colored
bar shows the ratio when the sum of each line is 1.)

Table 3: F-measure for each activity determined by transfer
learning

Activity F-measure
Still 0.9473±0.0031
Walk 0.9524±0.0063
Run 0.9899±0.0101
Bike 0.9556±0.0030
Car 0.9872±0.0022
Bus 0.9769±0.0069
Train 0.9644±0.0021
Subway 0.9646±0.0029
macro avg 0.9673±0.0029

when predicting the validation data. The validation data and test
data may have been less reliable than the expected results due to
individual differences, as the user measured was different from that
in the training data. To address this shortcoming and improve test
data predictions, we fine-tuned this model using the validation data.
DSML teams transfer model for activity recognition is expected
to produce a high F-measure of more than 96.7%. The recognition
result for the test data will be presented in the summary paper for
the challenge [9].

COMPUTER RESOURCES
In this challenge, we used a Supermicro GPU computer (CPU:Intel
Xeon CPU E5-1620 v4 @ 3.50 GHz × 8 / GPU: GeForce GTX 1080 Ti
× 1 / MEM: 125.8GB). Our CNN model was developed by Keras in a
Python environment. It took about two hours to create a predictive
model (including 10 minutes fine tuning), and then it took five
minutes to evaluate the test dataset.
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