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Figure 1: This networkwas used in the classification process. Dashed backward lines represent target variables, which are com-
pared against predicted ones to perform gradient descent. The discriminator is trained to distinguish between real data-label
pairs originating from the training data and fake data, which includes synthetic data created by the generator and unlabelled
data with predicted labels. The discriminator serves as adversarial for the other networks, guiding the generator to create
more realistic samples and the classifier to predict more accurate labels. A detailed description can be found in Sec. 3.

ABSTRACT
Wepresent a generative adversarial network (GAN) approach
to recognising modes of transportation from smartphone
motion sensor data, as part of our contribution to the Sussex-
Huawei Locomotion-Transportation (SHL) recognition chal-
lenge 2020 as team noname. Our approach identifies the lo-
cation where the smartphone of the test dataset is carried on
the body through heuristics, after which a location-specific
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model is trained based on the available published data at this
location. Performance on the validation data is 0.95, which
we expect to be very similar on the test set, if our estimation
of the location of the phone on the test set is correct. We are
highly confident in this location estimation. If however it
were wrong, an accuracy as low as 30% could be expected.

CCS CONCEPTS
• Computing methodologies → Machine learning ap-
proaches; • Human-centered computing → Ubiquitous
and mobile devices.
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1 INTRODUCTION
The SHL recognition challenge 2020 consists in identifying 8
modes of locomotion and transportation (being still, walking,
running, cycling, being in a bus, in a car, on a train or in the
subway), based on the motion sensor data in a smartphone.
The challenge makes use of a subset of the the SHL dataset
[1, 2].

This challenge is an evolution of the previous 2018 [3] and
2019 challenges [4]. This year’s edition consists in develop-
ing a model that will operate on a phone location on the body
which is unknown. It can be one of four locations: smart-
phone in the hand, in the trousers pocket, in a front shirt
pocket, or in a handbag/backpack. The available labelled data
include motion data from these 4 locations for a user called
user 1; a smaller validation dataset with motion data from
these 4 locations for a "target" user, which is a combination
of data of user 2 and 3. The unlabelled test data is from the
target user, and from an unknown location.

Our contribution to this challenge is:

• A method to identify which is the unknown location
of the smartphone in the test data, based on examin-
ing similarities in the feature space and the frequency
domain.

• Based on this identified location, we train a location-
specific model from the train and validation sets. We
use for this a generative adversarial network in order
to improve our prediction accuracy by including the
unlabelled test data into the training.

An ensemble of classifiers is used to prevent overfitting. To
our knowledge, this is the first usage of a GAN network on
this challenge.We suppose that this approach should perform
better than location-independent models if the discovery of
the unknown phone location in the target dataset is correct.

2 RELATEDWORK
SenseGAN
GANs, as proposed by Goodfellow [5], involve two deep
neural networks competing with each other in a minimax
game: The generator network G samples noise z from a
Gaussian normal distribution to create synthetic samples.
The discriminator network G distinguishes between given
real samples and the fake ones created by the generator.

Yao et al. further developed this concept by adding a clas-
sifier C into the GAN [6]. The classifier predicts labels for
given data points, the generator creates synthetic samples
based on a given label, and the discriminator aims to tell

apart real from fake data-label pairs. A data point 𝑥 is a se-
quence of sensor recordings and is referred to as "sample"
from now on. Together with a corresponding label 𝑦, they
form a data-label pair, shortened to "pair" from now on.

The training is based on two given datasets:𝑋𝐿 with corre-
sponding one-hot labels 𝑌 and data𝑋𝑈 with unknown labels.
In addition, during training, additional data is created in two
ways: i) A synthetic sample 𝑥 aiming at resembling the dis-
tribution of a given class 𝑦 is generated by the generator; ii)
a sample 𝑥𝑈 from the unlabelled dataset is associated with
a label 𝑦 predicted by the classifier, which attempts to trick
the discriminator into believing that the prediction is a real
label. Only the pairs (𝑋𝐿 ,𝑌 ) are considered real pairs. Unla-
belled data with predicted labels (𝑋𝑈 ,�̃� ) and data generated
for given labels (�̃� ,𝑌 ) are considered fake pairs.

The overall purpose of this architecture is to improve the
classifier performance, by training it to predict labels for
samples in a way that fools the discriminator into believing
them to be equal to the labelling in the original data. This
works better if the discriminator performs well, therefore
the generator exists as adversary for the discriminator.

Dataset
The data used in this challenge stems from the SHL Locomo-
tion and Transportation dataset [1]. This dataset is a publicly
available dataset designed to evaluate methods to recognise
modes of transportation and locomotions from smartphone
sensors.

The SHL dataset comprises the recordings of the sensors of
four smartphones placed in the hand, in the trouser’s pocket
(hips), in the shirt pocket (torso), and in a backpack/handbag
(bag) of 3 users, who engaged in 8 different transportation
and locomotion activities: being still, walking, running, cy-
cling, driving in a car, in a bus, on a train or on the subway.
All the motion sensor modalities are sampled at 100Hz. This
dataset has been used to understand the information content
in the various data channels [2, 7] and it was used in machine
learning challenges in 2018 and 2019 [3, 4].
The data used in this work is a subset of the complete

dataset called the SHL Challenge 2020 dataset. It contains
20 channels and is provided in the form of 5 second-long
windows. These windows are shuffled and therefore do not
represent a continuous time series. The channels are: ac-
celerometer, gyroscope, magnetometer, orientation in quater-
nions, gravity, linear acceleration, and ambient pressure. The
training data 𝑋𝑇𝑟𝑎𝑖𝑛 consists of 196072 windows captured on
all four locations of user 1. The validation data 𝑋𝑉𝑎𝑙 offers
28789 windows from both, user 2 and 3, again for all four
locations. The testing data 𝑋𝑇𝑒𝑠𝑡 , which is supposed to be
classified in this challenge, is made out of 57573 windows
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from user 2 and 3, captured at an unknown location out of
the four ones.

Past Approaches
The SHL challenge in 2018 consisted of training and test
data from one user in the form of 1 minute-long windows
[3]. The three best submissions consisted of two deep learn-
ing (DL) architectures and one classical machine learning
(ML) approach. The SHL challenge in 2019 included train-
ing, validation, and test data from one user in the form of 5
second-long windows, whereas the test data was located at
one position and the training data was only available at the
other three locations [4]. This time classical ML approaches
drastically outperformed DL approaches, this was concluded
to be caused by the mismatch between training and test
data. This shows the importance of correctly identifying the
sensor location to avoid this mismatch.

We found one approach which could be considered similar
to ours: Team DB used an Adversarial Autoencoder to utilize
unlabelled test data in the 2019 challenge [8]. The approach
did not seem to be successful as it scored a performance of
only 31.5% on the test data [4]. To our knowledge, we are
submitting the first prediction for the SHL challenge which
is based on a GAN architecture.

3 METHODS
Feature Extraction
For each window we compute the mean average, standard
deviation, mean-crossing-rate (mcr), kurtosis, and skewness
since this simple set of statistical features has shown to en-
able accurate classification [9]. The resulting feature vector
has a length of 100 (20 channels x 5 features). Each feature
is normalised individually in the range -1 and 1 at this stage,
and the rest of this work (except Frequency Domain Similar-
ity) uses only the normalised feature values.

Location Identification
In order to identify the target location used in the test data
we applied two evaluation techniques: One is concerned
with similarities in the feature space and the other one with
similarities in the frequency domain. The results strongly
suggest that ‘Hips’ is the target location, thus𝑋𝑉𝑎𝑙 and𝑋𝑇𝑟𝑎𝑖𝑛

were reduced to these subsets.

Feature Space Similarity. For this approach, we calculated the
mean feature vector across all windows of a location-specific
subset. The result were nine vectors, one for the test data
(𝑥𝑇𝑒𝑠𝑡 ), four for each location in the validation data (𝑥 (𝑛)

𝑉𝑎𝑙
),

and four for each location in the training data (𝑥 (𝑛)
𝑇𝑟𝑎𝑖𝑛

). We
evaluated 𝑋𝑉𝑎𝑙 and 𝑋𝑇𝑟𝑎𝑖𝑛 independently from each other.
We took the four location vectors together with 𝑥𝑇𝑒𝑠𝑡 and
normalised each feature by transforming it into the range

between 0 and 1 in order to equalise the significance of all
features.

𝑑

(
𝑥𝑇𝑒𝑠𝑡 , 𝑥

(𝑛)
𝐿𝑜𝑐

)
= | |𝑥𝑇𝑒𝑠𝑡 − 𝑥

(𝑛)
𝐿𝑜𝑐

| | (1)

We calculated the euclidean distance 𝑑 between the test
vector 𝑥𝑇𝑒𝑠𝑡 and a subset vector 𝑥 (𝑛)

𝐿𝑜𝑐
as shown in Eq. 1.

Table 1: Distance 𝑑 between 𝑋𝑇𝑒𝑠𝑡 and subset vectors from
datasets (a) 𝑋𝑇𝑟𝑎𝑖𝑛 and (b) 𝑋𝑉𝑎𝑙 .

(a)

Location Distance

Bag 6.02
Hand 6.39
Hips 4.85
Torso 5.02

(b)

Location Distance

Bag 6.39
Hand 5.27
Hips 5.15
Torso 6.31

The results of the validation vector in Tab. 1b show that
the locations ‘Hand’ and ‘Hips’ are the closest to the test
vector, with a minimal advantage of ‘Hips’. The results of
the less significant training vector in Tab. 1a show that the
locations ‘Hips’ and ‘Torso’ are the closest to the test vector,
with a slightly bigger advantage of ‘Hips’ than before.

Frequency Domain Similarity. For this approach, we again
examined the 9 location subsets. We computed the average
power spectrum of the acceleration magnitude across all
windows in each subset. The result were 8 figures, each
showing the plot of the power spectrum calculated on the
motion data of the target location, and the plot of the motion
power spectrum calculated on one of the 4 possible locations
in the training and validation data.
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Figure 2: Comparing the acceleration spectrum of the 𝑇𝑒𝑠𝑡
data to known locations.

The graphs were presented to six test subjects with expe-
rience in statistics. The graphs were presented in different
orders: Three subject were first shown the four validation
graphs and asked to simply state which one represents the
test graph the best, before they were asked to do the same for
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the four training graphs. This process was repeated for the
other three subjects, with the only difference that they were
shown the training graphs before the validation graphs to
prevent question order bias [10]. All subjects gave the same
answer for both sets of graphs. Out of the six test subjects,
five concluded that the ‘Hips’ curve resembles the target
curve the most. Only one subject, who saw the training
graphs first, chose ‘Hand’.

GAN Architecture
We implemented a solution based on previous work [9] in-
spired by SenseGAN [6], which is able to utilise the unla-
belled test data and thus improve the accuracy for predicting
the labels for the test data. Since there are no continuous
time series available, the GAN operates on extracted features
of the recorded windows. These extracted feature vectors 𝑥
serve as data samples for this approach. The GAN architec-
ture can be seen in Fig. 1.

Concept. A data sample 𝑥 serves as input for the classifier,
which predicts a corresponding label 𝑦 = 𝐶 (𝑥) in the form
of a vector of normalised class probabilities. If the sample
originates from the labelled subset 𝑋𝐿 , the loss is calculated
based on the actual label𝑦 as shown in Eq. 2, whereas 𝑡 refers
to one bit of the one-hot label.

𝐿 (𝐶) =𝑚𝑖𝑛

8∑
𝑖

[−𝑡𝑖 · log(𝐶 (𝑥𝐿)𝑖 )] (2)

However, if the sample is part of 𝑋𝑈 , the sample 𝑥 and
the predicted label 𝑦 are combined to serve as input to the
discriminator network. In that case the higher the loss of
the classifier, the better the ability of the discriminator to
classify these samples as fake (Eq. 3).

𝐿 (𝐶) =𝑚𝑖𝑛[𝑙𝑜𝑔(1 − 𝐷 (𝑥𝑈 ,𝐶 (𝑥𝑈 )))] (3)
The generator takes a random uniform distribution z and

a one-hot label 𝑦 as input and generates a data sample 𝑥 =

𝐺 (𝑧,𝑦), which is supposed to make the discriminator believe
that it is real. The length of the vector z is set to 100 (this
value is not related to the number of features in 𝑥) as it is
common practice [11]. The higher the loss of the generator,
the better the ability of the discriminator to classify the
generated samples as fake (Eq. 4).

𝐿 (𝐺) =𝑚𝑖𝑛[𝑙𝑜𝑔(1 − 𝐷 (𝐺 (𝑧,𝑦), 𝑦))] (4)
The discriminator is a binary classifier, which takes a pair

as input and predicts whether it originates from the real
dataset (𝑥𝐿 ,𝑦) or if it is a fake pair. A data-label pair is con-
sidered fake if either the data sample is synthetic (𝑥 ,𝑦) or
the label was predicted (𝑥𝑈 ,𝑦) by the classifier. The loss is
calculated as shown in Eq. 5.

𝐿 (𝐷) =𝑚𝑎𝑥 [𝑙𝑜𝑔(1 − 𝐷 (𝐺 (𝑧,𝑦), 𝑦))
+ 𝑙𝑜𝑔(1 − 𝐷 (𝑥𝑈 ,𝐶 (𝑥𝑈 )))
+ 𝑙𝑜𝑔(𝐷 (𝑥𝐿, 𝑦))]

(5)

The loss functions shown in Eq. 3-5 are an inverted variant
of the binary cross-entropy function, turning the common
minimisation problem into a maximisation one for the dis-
criminator.

Parameters. The networks were trained using the Adam op-
timizer [12]. The hyperparameters are primarily based on
the results of previous work [9]. Similarly, we selected the
learning rate 𝛼 and the exponential decay rate for the first
moment estimates 𝛽1 based on the results of a grid-search.
For this grid-search we tested various combinations of 𝛼 and
𝛽1 values in twelve rounds. Each round would start with test-
ing the generator parameters, followed by the discriminator
parameters, and finished with the classifier parameters, since
the last one were the most important ones. These rounds
were repeated since the parameters might affect each other.
One test consisted of three to four 𝛼 values tested against
three to four 𝛽1 values. After each test the parameters were
updated and the search space redefined based on the out-
come, resulting in a manually crafted random search.

Classifier. The classifier network GAN-C consists of an input
layer with a size of 15 (three channels with each five fea-
tures), one hidden layer with 256 nodes and an output layer
with a size of 8 (representing each of the eight classes). The
input and hidden nodes are activated by a ReLu function.
The one-hot label is determined by a Gumbel-Softmax ac-
tivation function [13], allowing random sampling based on
the class probabilities and discrete output values. Discrete
output values are crucial, since the discriminator could oth-
erwise identify continuous labels and distinguish them from
discrete real labels. The temperature of the Gumbel-Softmax
was set to 1, since it seemed like a good trade-off between the
bias in approximation and the variance in gradients. During
training the following parameters for the Adam optimizer
were established: 𝛼 = 0.003, 𝛽1 = 0.9, 𝛽2 = 0.999. The classi-
fier accuracy𝐴𝐶 is evaluated on a provided validation dataset
(not necessarily 𝑋𝑉𝑎𝑙 ).

Generator. The generator network GAN-G consists of an in-
put layer with a size of 108 (random vector with length of 100
plus eight one-hot labels), one hidden layer with 256 nodes
and an output layer with a size of 15 (a sample 𝑥 consisting of
three channels with five features each). The input and hidden
nodes are activated by a LeakyReLu function. The output
features are generated via the hyperbolic tangent function
to resemble the normalized data distribution between -1 and
1. During training the following parameters for the Adam
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optimizer were established: 𝛼 = 0.0005, 𝛽1 = 0.5, 𝛽2 = 0.999.
The generator accuracy𝐴𝐺 is based on the ratio of generated
samples which are classified as real by the discriminator.

Discriminator. The discriminator network GAN-D consists of
an input layer with a size of 23 (15 features plus eight one-hot
labels), one hidden layer with 256 nodes and an output layer
with a size of 1 (binary representation of real / fake). The
input, hidden and output nodes are activated by a LeakyReLu
function. During training the following parameters for the
Adam optimizer were established: 𝛼 = 0.0125, 𝛽1 = 0.75,
𝛽2 = 0.999. The discriminator accuracy 𝐴𝐷 is based on the
ratio of generated samples which are classified as fake (25%),
the ratio of unlabelled samples with predicted labels classifies
as fake (25%), and the ratio of pairs (𝑥𝐿, 𝑦) classified as real
(50%).

Training Setup
We convert the activity classes 𝑐 of 𝑋𝐿 into one-hot labels 𝑦.
Due to potential class imbalances in the data, we oversample
the minority classes in 𝑋𝐿 using SMOTE [14].
Since 𝑋𝑉𝑎𝑙 stems from the same two users as 𝑋𝑇𝑒𝑠𝑡 , we

valued the significance of 𝑋𝑉𝑎𝑙 way above 𝑋𝑇𝑟𝑎𝑖𝑛 . Therefore
𝑋𝑉𝑎𝑙 will serve as 𝑋𝐿 and 𝑋𝑇𝑒𝑠𝑡 as 𝑋𝑈 , so that GAN-C learns
from GAN-D how to label the target data. In order to not
waste the potential of 𝑋𝑇𝑟𝑎𝑖𝑛 , we used it to pretrain GAN-C.
The pretraining was done with 25 epochs of label predic-
tion, that time period achieved the peak accuracy of 50.1%
validated on 𝑋𝑉𝑎𝑙 .
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Figure 3: The development of accuracy over the training pe-
riod. 𝐴𝐶 is evaluated on (a) 𝑋𝑇𝑟𝑎𝑖𝑛 and (b) 𝑋𝑉𝑎𝑙 .

Validated both on 𝑋𝑉𝑎𝑙 and 𝑋𝑇𝑟𝑎𝑖𝑛 (Fig. 3), 50 epochs of
training were established to be optimal. At that point the
accuracy on 𝑋𝑉𝑎𝑙 has not converged towards 1.0 too much
yet (Fig. 3b) and still maintains some of its initial pretrained
accuracy on 𝑋𝑇𝑟𝑎𝑖𝑛 (Fig. 3a).
The 57573 samples in 𝑋𝑉𝑎𝑙 were extended by 18923 sam-

ples synthesised using SMOTE. In order to balance out the
influence of random disturbances, the final prediction of the
test set was based on an ensemble of 20 classifiers, each in-
dependently pretrained on 𝑋𝑇𝑟𝑎𝑖𝑛 and further trained with
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Figure 4: The development of accuracy over the training pe-
riod. 𝐴𝐶 is evaluated on 𝑋𝑉𝑎𝑙 .

individual generator and discriminator networks on 𝑋𝑉𝑎𝑙 as
𝑋𝐿 and 𝑋𝑇𝑒𝑠𝑡 as 𝑋𝑈 . We added up their continuous Gumbel
Softmax output and selected the argmax as their collective
assessment.

Development
The GAN was created using pytorch, the source code for
this project can be found on Github [15]. Training the final
model took 3 hours on a Intel quad-core i7-6700 3.4GHz CPU
and a Nvidia GeForce RTX 2080 Super GPU.

4 RESULTS

Table 2: Prediction accuracy of the final classifier ensemble
on (a) 𝑋𝑇𝑟𝑎𝑖𝑛 and (b) 𝑋𝑉𝑎𝑙 after 50 epochs of training.

(a)

Location 𝐴𝐶 𝜎

Bag 0.21 0.015
Hand 0.23 0.013
Hips 0.32 0.017
Torso 0.26 0.021

(b)

Location 𝐴𝐶 𝜎

Bag 0.33 0.029
Hand 0.30 0.029
Hips 0.95 0.007
Torso 0.33 0.030

The results in Tab. 2 show that our prediction accuracy is
highly depended on the correct identification of the location.
Based on the results on 𝑋𝑉𝑎𝑙 in Tab. 2b, we can expect an
accuracy as low as 0.3 if our identification is wrong, whereas
a correct identification should result in an accuracy of no
higher than 0.95, since the measured 0.95 were evaluated on
the same data the network was trained on.
As can be seen in Fig. 4 the development of 𝐴𝐶 and 𝐴𝐷

has mostly stabilised towards the end of the training, while
𝐴𝐺 is still increasing.
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5 DISCUSSION
While the accuracy of GAN-G in the trial runs shown in Fig.
3 has exploded initially to slowly decrease from there on, the
accuracy in the final run shown in Fig. 4, surprisingly shows
a steady increase in accuracy.1 Since there were no funda-
mental changes in the training methods in between these
runs, the difference can only result from changes in 𝛼 and 𝛽1
caused by the constantly ongoing grid-search (each of the 12
rounds took 2-3 days). This search could very likely be con-
tinued further to improve the quality of the GAN, although
it is challenging to find a equilibrium between the parame-
ters of three networks depending on each other. Instead of a
grid-search, a heuristic approach such as HyperNEAT [16]
could be used.

Another approach worth investigating would be training
all three networks with half of𝑋𝑇𝑟𝑎𝑖𝑛 as𝑋𝐿 and the other half
as 𝑋𝑈 , or potentially forgoing the classification of unlabelled
samples for the pretraining. The latter approach would in-
volve training GAN-D and GAN-G independently from GAN-
C, very much like the original GAN setup described in Sec.
2. However, due to potential unforeseen consequences like
getting stuck in a local minima in the form of a equilibrium
between GAN-D and GAN-G caused by training on 𝑋𝑇𝑟𝑎𝑖𝑛 ,
this approach was considered too risky without proper prior
evaluation. Although 𝑋𝑉𝑎𝑙 could have been split into a train-
ing and a validation subset, we assumed that this would
result in a significant decrease in classification accuracy due
to the small size of the dataset.
Our approach is a location-specific activity recognition

model, which is customized for the specific circumstances
of this challenge and depends on the correct identification
of location to achieve proper prediction accuracy. However,
the training setup could easily be changed into a location-
independent model, for instance by training with data from
all four locations and develop a more general applicable
classifier.

6 CONCLUSION
To our knowledge, this work is the first using a GAN and
an ensemble of deep learning models on the SHL recogni-
tion challenge. One unique aspect of this work is that we
attempted to create a smartphone location-specific model,
instead of a location-independent model. Both approaches
would be suitable as the location of the smartphone is un-
known, however a location-specificmodelmay achieve higher
performance.
We are highly confident in the location identification, as

two distinct methods operating in the feature space and
frequency domain both indicated that the target location is

1Generator performance is not a particular meaningful metric since it only
exists in the adversarial relation to discriminator performance.

likely to be ‘Hips’. Assuming the identification is correct, as
we believe, then we estimate the performance on the test set
to be similar to the performance on the validation set, i.e.
0.95. The recognition result for the testing dataset will be
presented in the summary paper of the challenge [17].
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