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ABSTRACT
To recognize locomotion and transportation modes in a user-
independentmannerwith an unknown target phone position,
we (team Eagles) propose an approach based on two main
steps: reduction of the impact of regular effects that stem
from each phone position, followed by the recognition of the
appropriate activity. The general architecture is composed of
three groups of neural networks organized in the following
order. The first group allows the recognition of the source, the
second group allows the normalization of data to neutralize
the impact of the source on the activity learning process, and
the last group allows the recognition of the activity itself. We
perform extensive experiments and the preliminary results
encourage us to follow this direction, including the source
learning to reduce the phone position’s biases and activity
separately.

CCS CONCEPTS
•Computingmethodologies→ Supervised learning by
classification; • Human-centered computing → Ambi-
ent intelligence.
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1 INTRODCUTION
Activity recognition has been studied actively in the context
of ubiquitous computing [2]. The development of wearable
devices such as smartphones, smartwatches, fitness trackers,
etc. carried by people all day long, allows the accumulation of
sensory data for recognizing people’s activities such as run-
ning, walking, cycling, being in a car, subway, bus and so on.
Often, research works around activity recognition assume
that the sensory data used to predict a given activity (during
deployment) are generated from the same user and wearable
devices placed at the same body locations as during the train-
ing phase. However, in real-world scenarios, this assumption
does not necessarily hold. The main challenges that these
approaches face are related to how to develop activity recog-
nition models that are both user- and position-independent.
These challenges become even harder to overcome when the
target user and the body location which will serve to predict
activities are unknown or unavailable a priori.
In this regard, the Sussex-Huawei locomotion and trans-

portation (SHL) challenge 2020 [5, 8] has collected a dataset
containing 105 days of wearable sensory data generated by
smartphones place on four different body parts and collected
by three users. The goal of the challenge is to recognize eight
locomotion and transportation activities from sensor data
of a smartphone in a position-independent manner. More
precisely, the goal is to predict the user’s activity from the
data coming from a smartphone placed on an unknown part
of the body, while the provided training data is collected
from smartphones on torso, hips, bag and hand positions,
and from a different user.
Assuming the locomotion-transportation mode as a con-

cept, in this paper, we consider the phones located in dif-
ferent positions as multiple views of the same concept. We
propose to (1) leverage these views entirely in order to learn a
joint representation via position-specific convolution-based
circuits. We then (2) determine the target position and (3)
fine-tune the corresponding circuit so as to increase the cir-
cuit’s robustness. The rationale behind this approach is that
multiple sources (positions in our case) have different levels
of informativeness with regard to the concept (locomotion-
transportation mode) that we want to learn. Learning a joint
representation, as a first step, helps the model compensate
for the potential lack of informativeness of some sources,
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i.e. the case where only and only a single and unknown
phone position is available during the test time. We obtained
a 58.29% (avg.) f1-score over all positions on the validation
set and, noticeably, a 10% improvement for the Hand posi-
tion after fine-tuning the baseline model while maintaining
recognition performances of other positions (Torso, Hips,
and Bag).
The rest of the paper is organized as follows. The SHL

dataset is described in Section 2 and Section 3 details our
proposed approach. Section 4 presents obtained results fol-
lowed by a conclusion in Section 5.

2 SHL CHALLENGE DATASET
Three participants 1, 2 and 3 performed full-time data collec-
tion in realistic scenarios. The detectors (HUAWEI phones)
have four positions on a person body: Hand, Torso, Hips
and Bag. The data movements have been annotated in 8 la-
bels: Still, Walking, Run, Bike, Car, Train and Subway. The
SHL dataset is organised in recording data for three users
according to Table 1.

The objective is to learn the modes of transportation and
locomotion in a user-independent manner with an unknown
phone position. The train, validation and test data was gen-
erated by segmenting the whole data with a non-overlap
sliding window of 5 seconds. Train data contains the raw
sensors data from user 1 and four phone locations during
59 days with given activity labels. The 5 seconds frames for
the train data are consecutive in time i.e. the recorded data
are not shuffled. Test user is a combination of users 2 and
3 recorded for 40 days. The phone position which is only
one position is not given, and the frames are shuffled, i.e.
two successive frames in the file are likely not consecutive
in time. And finally the Validation data is a combination of
users 2 and 3 with given phone positions and containing 6
recorded days. The frames for the train data are consecutive
in time and not shuffled. Sensors modalities (channels) of 4

Table 1: Data situation for Challenge 2020. The test data
come from a single and unknown body location.

2020 bag torso hip hand labels users days

Train ✔ ✔ ✔ ✔ ✔ 1 59

Validation ✔ ✔ ✔ ✔ ✔ 2, 3 6

Test ? ? ? ? ✗ 2, 3 40

synchronised phones are recorded as: Accelerometer (x, y,
z), Gyroscope (x, y, z), Magnetometer (x, y, z), Orientation
(quaternions in the form of w, x, y, z), Gravity (x, y, z), Linear
acceleration (x, y, z), Ambient pressure for all 8 classes and
phone positions. In this work, we use two forms of sensor

channels, the raw data and the magnitudes for channels with
three axes x, y and z which are calculated from the following
formula and then normalized as well:

𝑚𝑖 =

√
𝑥2
𝑖
+ 𝑦2

𝑖
+ 𝑧2

𝑖

3 PROPOSED APPROACH
Our approach is based on three major steps: (1) we construct
a joint representation via position-specific circuits, (2) we de-
termine the target source (test phone position) using a source
discriminationmodel, and (3) we fine-tune the corresponding
circuit by optimizing the recognition performances. Figure 1
summarizes the proposed approach. In the following, we
detail the components of our suggested approach.

Joint Representation
Regarding Figure 1, we construct a joint representation from
the different input sources and phone positions. The whole
network is composed of 4 different circuits (related to Hand,
Hips, Bag, and Torso) where each circuit processes the inputs
of a specific source and each individual circuit produces a
vector representation for each individual source.

Position-Specific Circuit. Figure 2 illustrates the architecture
of each circuit individually related to its phone position. Each
circuit neural architecture is constructed by stacking up to
3 Conv1d/ ReLU/ MaxPool/ BatchNorm blocks to processes
the input channels related to the phone position [6, 9]. These
blocks are followed by a Concatenate layer and a Dense
layer to recognize the phone position finally. As an example
view_Hand predicts a vector embedding for the given inputs
of the Hand sensors.

Source Discrimination
The source discrimination model is based on the energy of
input signals. We hypothesize that, while performing activi-
ties, different positions carry different energies. This is due
to the fact that the amplitude of movements varies from
one position to another. For example, the amplitude of hand
movements is more significant than those of the torso (see
Figure 3).

Signal energy. Assume 𝑠 is a signal modality of a given po-
sition with length 𝑁 . The signal energy is computed as
𝐸 =

∑𝑁−1
𝑖=0 𝑠𝑖 where 𝑠𝑖 is the 𝑖th sample of the 𝑠 signal. In

order to see how the signal energies are different respecting
various phone positions, Figure 3 shows the signal energy
computed for the first 100 frames of different positions. Note
that we compute these statistics for the validation dataset.

Fine Tuning
After determining the source (phone position) of the test data,
we fine-tune the corresponding circuit in order to make the
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Figure 1: Diagram summarizing our proposed approach. First (left), the whole network is trained to optimize a joint represen-
tation and by the same occasion the representation of each individual phone position. Second (right), after determining the
test source, the corresponding circuit (highlighted in the figure) is fine-tuned by optimizing its recognition performances.
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Figure 2: Each phone position architecture is constructed by
stacking up to 3 Conv1d/ReLU/MaxPool/BatchNorm blocks
for processing each input channel individually. These
blocks are followed by aConcatenate layer and aDense layer
(referred to view_Hand for the phone positioned on Hand).

model more robust w.r.t this particular source. Fine-tuning
for a specific position may produce what is referred to as
"catastrophic forgetting". This would make our final model
unreliable if presented with inputs from another position. In
this initial set of experiments, to compensate for the simplic-
ity of the discrimination model, we chose to fine-tune for the

(a) (b)

(c) (d)

Figure 3: Signal energy of the first 100 frames of Acc_x chan-
nel for (a) Hand, (b) Hips, (c) Bag, and (d) Torso.

hand position and make sure that we do not lose much for
the remaining positions. That is, we make sure that the final
model performs equally well for all sources and alleviate
catastrophic forgetting. To do this, after selecting the circuit
(in our case Hand circuit), we fine-tune its weights using
inputs of each source individually. This results in 4 different
models for Hand, Hips, Torso and Bag.
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Precisely, for each source, we construct a new network
using the Hand circuit (selected by the source discrimination
model) and up to 3 additional dense layers, which are added
on top of the view_Hand (See Figure 1 right). The additional
dense layers of the new network are first trained while the
base network is frozen (set to inference mode). Afterward,
theweights of thewhole new network are trained to optimize
the recognition performances 1.
Additionally, as a baseline, we populate all inputs of the

network using a single source in order to assess how fine-
tuning influences the recognition performances.

Hyperparameters Tuning
The hyperparameters of the proposed architectures in Fig-
ures 1 and 2 are tuned using the Tree-structured Parzen
Estimator (TPE) [3] to optimize the performance of the cor-
responding network for recognizing mobility and transporta-
tion modes. In total, 46 different hyperparameters are tuned
during this step.

Hyperparameters space. Table 2 summarizes the different hy-
perparameters that are tuned and their respective domains
(values). According to Figure 2 each phone position architec-
ture contains 3 blocks where each block contains a convolu-
tional network. The three block parameters given in Table 2
are the hyperparameters for the three convolutional net-
works respectively. Notice that these parameters are tuned
for various multimodal channels while they are the same for
the four phone positions. On the other hand, each phone-
position view layer has a set of hyperparameters namely
view Position and according to Figure 1 (left), the joint rep-
resentation layer has its own set of hyperparameters. And
finally, the global learning rates should be tuned for the sys-
tem as well. The second set of hyperparameters is specific
for each phone position and should be tuned according to
each source separately.

Search strategy. We use the Tree-structured Parzen Estimator
(TPE) in order to explore the hyperparameter space. Similar
to the Bayesian optimization, TPE is part of the sequential
model-based optimization approaches. These, sequentially,
construct models to approximate the performance of hyper-
parameters using previously explored configurations in order
to predict which hyperparameters instantiation to explore
next. However, unlike Bayesian optimization, TPE deals nat-
urally with situations where elements of the hyperparameter
space are known to be irrelevant given particular values of

1Note that this second training phase is performed using a low learning
rate so as not to lose what was jointly learned so-far from each individual
position. Note also that even if the base model is set to training mode
(allowing weights updates), it is kept in inference mode which means that
the BatchNorm layers will not update their batch statistics.

Table 2: Summary of the hyperparameters tuned using the
TPE. Hyperparameters of the blocks 1, 2, and 3 are tuned per
channel and are common for all the same phone positions
while those of position-specific views are tuned per each po-
sition.

hyperparam. domain (values)

Block 1
channel_numfilters_0 8, 16, 32, 64
channel_kernelsize_0 7, 11, 17

Block 2
channel_numfilters_1 8, 16, 32, 64
channel_kernelsize_1 5, 7, 11, 17

Block 3
channel_numfilters_2 8, 16, 32, 64
channel_kernelsize_2 2, 3, 5, 7, 11, 17

Position-specific views
view_Position_3 10, 15, 20, 25, 30, 35, 40

Joint representation
hiddenunits_3 128, 256, 512, 1024, 2048
dropout_3 [0.3, 0.9] (uniform distrib.)

Global
learning rate [1e-05, 1e-01] (uniform distrib.)

other elements. In other words, it preserves specified condi-
tional dependence over hyperparameters [3].

4 RESULTS
In this section, we present an empirical evaluation of our
proposed approach based on the Keras [4] framework with
Tensorflow [1] backend. We use the Microsoft-NNI toolkit 2
which provides a comprehensive list of exploration strategies
particularly based on hyperparameter tuning.

Hyperparameters Tuning
Figure 4 shows the result of the hyperparameter tuning phase.
Each curve in the figure is a different instantiation of the
hyperparameters, i.e. the values that each hyperparameter
takes at a given time step and the resulting recognition per-
formance accuracy. Each individual network is trained using
the raw data inputs generated by all available data sources
(phone-positions). Note that training of a given network
stops after 7 subsequent epochs without improvement over
the median of recognition performances obtained so far. Hy-
perparameters tuning allows us to substantially improve the
recognition performances. Noticeably, we get more than 20%
improvement.

2https://github.com/microsoft/nni

https://github.com/microsoft/nni
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Figure 4: Most influential values of the tuned hyperparameters and their corresponding recognition performances accuracy
(Top 20%). The rightmost bar corresponds to the recognition performances where red color indicates the highest performance.

Training Using All 4 Sources
Figure 5 shows recognition performances of our proposed
network (see Figure 1) trained on magnitude channels inputs
to construct a joint representation from the different inputs
on four various phone positions related circuits. This net-
work achieves approximately 81% and 75% accuracy on the
training and validation sets respectively. Using computed
magnitudes rather than raw inputs improves recognition per-
formances by more than 10%. Although, we notice that the
obtained model often confuses Car with Bus and Train with
Subway activities. Note that the validation data is performed,
similarly to the training phase, using all circuits related to
all phone positions.

(a) (b)

Figure 5: Performances of the proposed network trained on
magnitude inputs to construct a joint representation from
the different phone positions. (a) confusion matrix and (b)
evolution of training and validation accuracy over epochs.

Fine-tuning
To assess the behavior of the model without fine-tuning,
Figures 6(a)–(d) show confusion matrices obtained by popu-
lating the network, at every turn, with inputs from a unique
position. Figures 6(e)–(h) and 6(i)–(l) show the confusion ma-
trices of the model fine-tuned using Hand and Hips inputs,
respectively, and validated on all 4 positions individually.
We notice that even if the model that is fine-tuned using

Hips inputs (Figure 6) substantially improves recognition

performances on both Hips and Bag inputs, but Hand inputs
are not handled well. In contrast, when we fine-tune the
model using Hand inputs, we obtain a model that performs
equally-well on each individual position.

Computational Resources
We use the computing power provided by Magi 3. In par-
ticular, we allocated two nodes: a CPU (96 GB RAM and 56
cores@2.20 GHz) and a GPU (4 × Tesla K40M ). Training a
single model on the whole training set (196072 examples)
takes approximately 3 hours (on avg.). This includes train-
ing the network on the whole inputs as well as fine-tuning
specific circuits. Prediction both on the validation (28789 ex-
amples) and test (57573 examples) sets takes approximately
1 minute.

5 CONCLUSION
We presented in this paper our (team Eagles) proposed ap-
proach as part of the SHL challenge 2020. The goal was
to recognize modes of locomotion and transportation in a
user-independent manner with an unknown target phone
location. We proposed an architecture to leverage the en-
tire perspectives featured by the phone positions in order to
learn a joint-representation via position-specific circuits and
to separate the position problem from the recognition one.
The rationale behind this approach is that various locations
have different levels of informativeness with respect to the
concept we want to learn. Learning a joint representation
helps the model compensate for potential lack of informative-
ness of some sources. We notably obtained a 62.29% f1-score
over Bag position on the validation set after fine-tuning the
baseline model using Hand inputs. The recognition result for
the testing dataset will be presented in the summary paper of
the challenge [7]. Several experiments are done, preliminary
results encourage us to follow this direction. Notably, learn
firstly the position of the phone to limit its potential bias
before learning the activity itself.

3http://magi.univ-paris13.fr/wiki/

http://magi.univ-paris13.fr/wiki/
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(a) Hand inputs
f1 score = 46.92%

(b) Hips inputs
f1 score = 58.96%

(c) Bag inputs
f1 score = 63.49%

(d) Torso inputs
f1 score = 56.73%

(e) Hand inputs
f1 score = 56.66%

(f) Hips inputs
f1 score = 58.28%

(g) Bag inputs
f1 score = 62.29%

(h) Torso inputs
f1 score = 55.94%

(i) Hand inputs
f1 score = 44.76%

(j) Hips inputs
f1 score = 66.29%

(k) Bag inputs
f1 score = 68.22%

(l) Torso inputs
f1 score = 55.03%

Figure 6: Confusionmatrices of the network (a)–(d) populated, at every turn, with inputs from a unique phone position. (e)–(h)
Fine tuning the Hand circuit using Hand inputs. (i)–(l) Fine-tuning the Hand circuit with Hips inputs.
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