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ABSTRACT
We present the solution of team MDCA to the Sussex-Huawei
Locomotion-Transportation (SHL) recognition challenge 2020. The
task is to recognize the mode of transportation from 5-second
frames of smartphone sensor data from two users, who wore the
phone in a constant but unknown position. The training data were
collected by a different user with four phones simultaneously worn
at four different positions. Only a small labelled dataset from the
two “target” users was provided. Our solution consists of three
steps: 1) detecting the phone wearing position, 2) selecting training
data to create a user and position-specific classification model, and
3) “smoothing” the predictions by identifying groups of similar data
frames in the test set, which probably belong to the same class.
We demonstrate the effectiveness of the processing pipeline by
comparison to baseline models. Using 4-fold cross-validation our
approach achieves an average F1 score of 75.3%.
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1 INTRODUCTION
After two successful competitions in the previous years, the third
Sussex-Huawei Locomotion-Transportation (SHL) recognition chal-
lenge in 2020 continues this emerging tradition. Again the goal is
to recognize 8 different means of transport and locomotion using
sensor data recorded with smartphones. The results of the past
two competitions [3, 6] have shown that the patterns in the sensor
data vary between users and also depend on the position where the
smartphone is worn. Therefore, the performance of a classification
model is higher if it has been trained specifically for a particular user
and a defined wearing position. In addition, the detection accuracy
also depends on the length of the observation period, i.e the length
of the data frames. In the previous competitions, using Hidden
Markov Model smoothing as a post-processing step has proven to
be an effective way to leverage the additional information contained
in longer time series [6]. First, the data is segmented with a sliding
time window of a few seconds length to generate input vectors with
fixed dimension for the classification model. In a second step the
classifier output of multiple consecutive time frames is smoothed
by defining (or learning) transition probabilities and applying the
Viterbi algorithm. This years’ competition introduces additional
challenges: the modes of transportation have to be inferred from
data windows that are only 5 seconds long. The training data come
from only one user and from four different wearing positions: Hand,
Bag, Hips, and Torso. The test data, however, were collected by 2
other users and come from an unknown wearing position. The data
frames in the test set have been created by segmenting the sensor
time series using a 5-seconds sliding window. The resulting frames
were shuffled to remove their temporal ordering. Moreover, the
sliding window had a step size larger than the window size, which
means that the data frames do not connect seamlessly and there are
gaps between the data frames. This makes it very difficult - or even
impossible - to restore their original ordering. In addition to the
training and test datasets, a small validation dataset was provided.
This dataset contains data from all four phone positions and from
the same two users as the test data.

We tackle this task using a similar classification model as in
the 2018 competition [7]. However, based on the learnings of the
previous SHL recognition challenges we identified the following
key approaches to address the particular difficulties of this years’
competition:
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(1) finding out the phone wearing position of the test data and
training a classifier specifically for that position;

(2) using data from the two “target” users in the test data to im-
prove classification performance specifically for these users;

(3) “smoothing”: finding a way to average over groups of related
data frames instead of classifying solitary data frames.

We present a processing pipeline that implements each of these
points, and we evaluate its performance using the validation dataset
provided for the SHL recognition challenge.

The remainder of this paper is organized as follows: in Section 2
we define the particular task of the 2020 SHL recognition challenge
and describe the data we used for our submission. We specify the
features extracted from the sensor data and present details about
our method in Section 3. Finally, we report our experimental results
in Section 4.

2 DATA AND TASK DESCRIPTION
The data used for the challenge is a subset of the Sussex-Huawei
Locomotion-Transportation (SHL) Dataset [2, 5]. All data was col-
lected with a HUAWEI Mate 9 smartphone and a specific Android
application [1]. The datasets contain readings from the following
sensors: 3D accelerometer, gyroscope, magnetometer, linear ac-
celerometer, gravity, orientation, ambient air pressure. The sensor
data were segmented into data frames with 5 seconds length, each
containing 500 values, corresponding to a sampling frequency of
100Hz. The data comprises 59 days (196072 frames) of training data,
6 days (28789 frames) of validation data, and 40 days (57573 frames
of test data. In our processing pipeline and experimental evaluation
we use parts of the validation dataset for model training. To avoid
confusions, we refer to the training dataset as𝑇 , the validation data
as 𝑉 , and to the test data as 𝑋 in the following sections.

The goal of the 2020 SHL recognition challenge is to recognize 8
modes of transportation in a user and phone position independent
manner, which is reflected by the provided data. The training data
𝑇 contains data from user 1 and from four different phone positions:
Hand, Hips, Torso, and Bag. The validation set𝑉 contains data from
users 2 and 3, and the same four phone positions. Both 𝑇 and 𝑉
include the correct activity class labels. The data frames in𝑇 and𝑉
were generated by segmenting the whole sensor time series with a
non-overlapping sliding window and are consecutive in time. The
test data 𝑋 contains data from users 2 and 3, but from only one
undisclosed phone position. The data frames were again generated
with a non-overlapping sliding window, but here the jumping size
was larger than the window size so that there are gaps between the
data frames. In addition the samples in 𝑋 are shuffled and therefore
not consecutive in time. The class labels for 𝑋 are held back by the
organizers of the challenge, because this is the data on which the
submissions must make their predictions.

3 PROCESSING PIPELINE
Our data processing pipeline consists of the following steps:

(1) Extracting features from the raw sensor data;
(2) PhonePositionRecognition: training a classificationmodel

for phone position recognition using datasets 𝑇 and 𝑉 and
detecting the phone position in dataset 𝑋 ;

(3) PhonePosition andUser-specificTransportModeClas-
sification: training a classification model using dataset 𝑉
(all phone positions) and dataset 𝑇 (only the phone position
detected in the previous step);

(4) “Nearest Neighbour smoothing”: identifying groups of
similar data frames in 𝑋 and inferring a common class la-
bel for the group of data frames by combining their class
posteriors.

In the following we will explain each of these steps in detail.

3.1 Feature Extraction
We use two different sets of features: one for classification and the
second for defining similarity among data frames in the test set 𝑋 .

For classification we use the same features as in [8] including
the following sensor modalities: 3D accelerometer, gravity sensor,
gyroscope, magnetometer, and barometric sensor. From the 3D
sensors we compute the magnitude of the (𝑥,𝑦, 𝑧)-vectors to obtain
rotation invariant values. We use statistics such as mean value,
standard deviation, minimum and maximum value. In addition we
derive features from the Fourier transform and the autocorrelation
function of the sensor time series. We will denote the classification
feature vectors of a data frame 𝑑 by f𝑑 .

To introduce a measure of “similarity” between data frames
(which we will use for identification of Nearest Neighbours in
Sect. 3.4) we use data of the 3D accelerometer, the orientation
sensor, and the barometer. The feature vector includes the mean
value of the orientation vector, the mean ambient air pressure, and
the autocorrelation of the acceleration magnitude for time lags from
10ms to 100ms. The feature vectors defining the similarity between
data frames will be denoted by s𝑑 .

3.2 Phone Position Recognition
In order to recognize the phone wearing position of dataset 𝑋 we
train a classifier using datasets 𝑉 and 𝑇 (all phone positions) as
training data. Instead of using just the phone position as class labels
we generate tuples (𝑚, 𝑝) which combine a particular transport
mode label𝑚 and a phone position 𝑝 . Since there are 8 different
modes of transportation and 4 different phone positions, this results
in 8×4 = 32 distinct class labels. The classification model is a Multi-
Layer Perceptron (MLP) with two hidden layers (20 and 12 units,
respectively). For each feature vector f𝑑 the trained MLP computes
posteriors 𝑃 (𝑚, 𝑝 |f𝑑 ) from which we can easily derive 𝑃 (𝑝 |f𝑑 ) =∑
𝑚 𝑃 (𝑚, 𝑝 |f𝑑 ). The phone wearing position of 𝑋 is detected by

maximizing 𝑃 (𝑝 |𝑋 ), ie.

𝑝𝑋 = argmax
𝑝

∏
𝑑∈𝑋

𝑃 (𝑝 |f𝑑 ) .

Note that this approach assumes that all data in 𝑋 are from the
same phone wearing position!

For the test dataset𝑋 our approach identified the phone position
“Hips”. This result is extremely important as the following step in
the processing pipeline builds upon it and will produce poor results
if the inferred phone position is wrong.
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3.3 Phone Position and User-specific Transport
Mode Classification

Relying on the result of the previous step we train a phone position-
specific transport mode classification model. In order to do so, we
remove all data from 𝑇 which were not collected by the "Hips"
phone and keep only the resulting subset 𝑇𝐻𝑖𝑝𝑠 . Since the patterns
in the data also depend on the user, we additionally use dataset𝑉 for
model training. In our experiments we observed that keeping the
data from all phone positions in𝑉 improves the model performance.
The reason might be that 𝑉 is very small, and the benefit of adding
more user-specific data outweighs the negative impact of mixed
phone positions.

3.4 Nearest Neighbour Smoothing
The data frames generated by segmenting sensor time series (e.g.
data of a single journey) with a sliding window are often very
similar to each other, in particular when the time between the
data frames is short. This similarity can be explained by the fact
that many factors influencing the patterns in the sensor signals
remain constant or change slowly or very rarely: the user, the phone
wearing position, the orientation of the phone, the transport mode,
the particular vehicle, the pavement of the road, the driving (or
walking) speed, etc. Contrarily, if some of these factors change, the
similarity between data frames decreases, sometimes dramatically.
This is the reason why user and phone position-specific models
perform better than user and phone position-independent models.
It also explains why shuffling the data frames before splitting them
into a training and validation dataset can introduce a strong upward
scoring bias to model validation results [9].

On the other hand, the inter-dependencies between data frames
can also be used to improve classification performance. If the data
frames are consecutive in time, Hidden Markov Model (HMM)
smoothing can be applied as a post-processing step [7]. The tran-
sition probabilities reflect the dependencies between neighbour-
ing frames and control how frequently the mode of transport can
change. Unfortunately, in the present task the data frames in 𝑋

are not consecutive in time. Restoring the original time series in
the correct temporal order is not possible, because the step size of
the sliding window used to generate the data frames is larger than
the window size. We therefore introduce a method to leverage the
dependencies among the data frames in 𝑋 without relying on their
temporal ordering. To explain our approach we will rephrase the
findings above without referring to temporal proximity.

Supervised classification learning (in particular k-Nearest Neigh-
bour classification) assumes that the instances in the test set have
the same class label as the most similar instances in the training
set. In practice, this assumption is often wrong, because of a “dis-
tributional shift” that arises when some of the factors influencing
the distribution of the data differ between the training and the test
data. Models relying too much on this assumption are said to over-
fit the training data. However, the assumption that the instances
in a particular dataset have the same class label as the most sim-
ilar instances in the same dataset often holds, because there are
often groups of instances sharing many of the influencing factors
(phone orientation, vehicle, pavement, speed, etc), one of which

is the mode of transport. Therefore, we can assume that “smooth-
ing” over neighbouring instances in 𝑋 can increase classification
performance.

To predict the label of a data frame 𝑥0 ∈ 𝑋 we identify the 10
Nearest Neighbours, ie. 10 data frames 𝑥1, ..., 𝑥10 ∈ 𝑋 with the
smallest distance to 𝑥0. The distance between two data frames 𝑎
and 𝑏 is computed as the standardized Euclidean distance between
similarity feature vectors s𝑎 and s𝑏 :

𝑑 (s𝑎, s𝑏 ) =

√√∑
𝑖

(𝑠𝑎,𝑖 − 𝑠𝑏,𝑖 )2

𝜎2
𝑖

,

where 𝜎2
𝑖
is the sample variance of feature 𝑠𝑖 in𝑋 . We then combine

the class posteriors of the 10 nearest neighbors computed by the
MLP as follows:

𝑃 (𝑚 |f𝑥 ) =
∏

𝑘=0,...,10
𝑃 (𝑚 |f𝑥𝑘 )

and identify the class label as

�̂�𝑥 = argmax
𝑚

𝑃 (𝑚 |f𝑥 ) .

Note that we used features s𝑥 instead of f𝑥 to compute simi-
larity between data frames. We chose features we expected to be
strongly governed by external factors which slowly or rarely change
over time: the mean ambient air pressure depends on altitude and
weather, the mean phone orientation depends on the wearing posi-
tion and pose of the user, and the autocorrelation function of the
acceleration signal is influenced by current speed, properties of the
vehicle (engine, tires, seats) and the road surface. These features
are therefore suitable for identifying groups of related data frames
in 𝑋 . However, due to their sensitivity to external factors we do not
expect these features to be suitable for transport mode recognition
across different datasets.

It is also worth mentioning that Nearest Neighbour smoothing is
based on similar ideas as graph-based semi-supervised learning (SSL)
[10], where a nearest neighbour graph is used to approximate man-
ifolds in the feature space, which are assumed to consist of points
having the same class label. However, there are some important
differences to our method: graph-based SSL propagates informa-
tion from instances with given labels to unlabelled instances. The
class-labels are iteratively propagated through the entire graph, at-
tempting to find a globally optimal and consistent solution. Nearest
Neighbour smoothing, on the other hand, combines class-posteriors
within a local neighbourhood of each instance to improve classifi-
cation accuracy.

4 RESULTS
In this section we report the experimental results of the proposed
classification model and test the effectiveness of the individual steps
in the processing pipeline.

All experiments were conducted on a computer with Intel(R)
Core(TM) i7-8650U CPU (8 cores, 1.9GHz) and 16GB RAM. We
implemented the algorithms in Java using proprietary libraries for
MLP training developed at our institute. The implementation is
single-threaded, thus using only one CPU core at a time, and does
not use GPU acceleration. Model training took about 2 minutes
(time for reading the training data from disk and extracting features
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not included) and storing the model on disk requires about 246kB.
Labelling the test dataset took about 6 seconds (0.5s for feature
extraction, 2.5 seconds nearest neighbour search, 3 seconds MLP
predictions).

To validate our approach to phone position recognition we
trained a classifier using only dataset 𝑇 and predicted the phone
positions of the subsets 𝑉𝐻𝑎𝑛𝑑 , 𝑉𝐻𝑖𝑝𝑠 , 𝑉𝐵𝑎𝑔 , and 𝑉𝑇𝑜𝑟𝑠𝑜 . In each of
these experiments the phone position was correctly identified.

We tested the performance of the user and phone position-
specific MLP by comparison with several baseline models. The first
baseline model was trained using the entire dataset 𝑇 (all phone
positions) as training data. This approach is obvious since 𝑇 was
made available for the purpose of model training. However, the
resulting model is specific to user 1 and contains no information
about the characteristics of users 2 and 3 in dataset 𝑋 . The specific
phone position of the data in 𝑋 is also contained in 𝑇 , albeit mixed
with three other phone positions. This baseline model achieves an
average F1 score of 56.0 %. A second baseline model was trained us-
ing the entire dataset𝑉 , which contains data from the same users as
𝑋 . Since we had to use𝑉 for both model training and validation, we
estimated the classification performance by 4-fold cross-validation
(without shuffling the data frames): in each iteration we excluded
25% of 𝑉 from model training and used it for validation. With an
average F1 score of 56.2% this user-specific model performs only
slightly better than the first baseline. However, 𝑉 is very small and
since we used 4-fold crossvalidation only 75% of 𝑉 could actually
be used for training in each crossvalidation iteration. Assuming
that a larger dataset would have allowed for a greater improvement,
we combined 𝑇 and 𝑉 to train another classification model, which
further increased the average F1 score to 56.8%. A phone position-
specific model trained with only data from the Hips phone in𝑇 and
𝑉 allowed a clear improvement and achieved an average F1 score
of 59.9%. However, the proportion of data from set 𝑉 is still very
small. Combining the Hips data of 𝑇 with the data from all phone
positions in 𝑉 clearly outperformed all previous models, achieving
an average F1 score of 63.3%. An overview of the results is provided
in Table 1.

The last step in the processing pipeline, Nearest Neighbour
smoothing, was also validated by 4-fold cross-validation. The re-
sults are detailed in Table 2. In this experiment the average F1
score of our model was 75.3%. Similar to the results of the previ-
ous SHL recognition challenges, there are confusions between Car
and Bus, and between Train and Subway. This indicates that these
transport modes generate similar patterns in the sensor data. Inter-
estingly, some transport modes are frequently predicted to be Still,
in particular Bus and Car. The reason might be that the data frames
are only 5 seconds long and the mislabelled frames correspond to
short stops at traffic lights. Confusions between Walk, Run, and
Bike might indicate that these classes are more strongly affected
by user-characteristics (e.g. age, size, gait) and phone position than
the other modes of transport.

5 CONCLUSION
In practical applications, using smartphone sensor data to accu-
rately and robustly recognize transport modes is a difficult task,
because the characteristic patterns in the sensor data depend on

Table 1: 4-fold cross-validation results of MLPs trained with
different datasets.

training data avg F1

𝑇 56.0%
𝑉 56.2%
𝑇 +𝑉 56.8%
𝑇ℎ𝑖𝑝𝑠 +𝑉ℎ𝑖𝑝𝑠 59.9%
𝑇ℎ𝑖𝑝𝑠 +𝑉 63.3%

Table 2: 4-fold cross validation results of the proposed clas-
sification model.

predicted activity

(%) St
ill

W
al
ki
ng

Ru
n

Bi
ke

Ca
r

Bu
s

Tr
ai
n

Su
bw

ay

ac
tu
al

ac
ti
vi
ty

Still 18.8 0.6 0.0 0.0 0.2 0.5 0.3 0.2
Walk 1.7 14.0 0.4 1.5 0.3 0.0 0.0 0.1
Run 0.0 0.1 1.6 0.2 0.0 0.0 0.0 0.0
Bike 0.4 0.1 0.0 7.3 0.1 0.4 0.0 0.0
Car 2.3 0.0 0.0 0.0 7.9 1.9 2.0 0.1
Bus 1.1 0.1 0.0 0.0 1.3 3.2 0.6 0.1

Train 1.1 0.1 0.0 0.0 0.2 0.4 11.5 1.8
Subway 0.2 0.0 0.0 0.0 0.1 0.0 2.1 12.7

Recall: 90.7 77.2 81.6 87.2 55.8 50.9 76.0 84.1
Precision: 73.5 93.1 80.0 79.6 77.6 49.9 69.7 84.7

avg. Recall: 75.5
avg. F1: 75.3

physiological properties of the user and the phone wearing position
(among other factors). The problem is further complicated when the
transport mode has to be recognized in real-time, i.e. using only a
few seconds of data. The SHL recognition challenge 2020 attempts
to address this problem by using test data from an undisclosed
phone wearing position and users that were not included in the
training data. The data frames in the test data are only 5 seconds
long and not consecutive in time. Restoring the temporal order
by “data stitching” is prevented by introducing gaps between the
frames.

However, we presented a processing pipeline tailored to the
particular task of the 2020 SHL recognition challenge that does not
meet the requirements of practical real-time applications. Instead
of processing individual data frames as they would arrive in an
online stream, we applied an offline batch process. This allowed
us to leverage dependencies between the data frames in the test
set. Moreover, knowing that all test data are from the same phone
position we could detect the phone position and apply a position-
specific classification model. The provided validation data, albeit
small, allowed adapting the model to characteristics of the users in
the test set. We showed empirically, that these steps can improve
the classification performance drastically.

The recognition result for the testing dataset will be presented
in the summary paper of the challenge [4].



Tackling the SHL Recognition Challenge with Phone Position Detection and... UbiComp/ISWC ’20 Adjunct, September 12–16, 2020, Virtual Event, Mexico

REFERENCES
[1] Mathias Ciliberto, Francisco Javier Ordoñez Morales, Hristijan Gjoreski, Daniel

Roggen, Sami Mekki, and Stefan Valentin. 2017. High reliability Android appli-
cation for multidevice multimodal mobile data acquisition and annotation. In
Proceedings of the 15th ACM Conference on Embedded Network Sensor Systems.
ACM, 62.

[2] Hristijan Gjoreski, Mathias Ciliberto, Lin Wang, Francisco Javier Ordonez
Morales, Sami Mekki, Stefan Valentin, and Daniel Roggen. 2018. The Uni-
versity of Sussex-Huawei Locomotion and Transportation Dataset for Mul-
timodal Analytics with Mobile Devices. IEEE Access 6 (2018), 42592–42604.
https://doi.org/10.1109/ACCESS.2018.2858933

[3] L. Wang, H. Gjoreski, M. Ciliberto, P. Lago, K. Murao, T. Okita, and D. Roggen.
2019. Summary of the Sussex-Huawei locomotion-transportation recognition
challenge 2019. In Proceedings of the 2019 ACM International Joint Conference
and 2019 International Symposium on Pervasive and Ubiquitous Computing and
Wearable Computers. 849–856.

[4] L. Wang, H. Gjoreski, M. Ciliberto, P. Lago, K. Murao, T. Okita, and D. Roggen.
2020. Summary of the Sussex-Huawei locomotion-transportation recognition
challenge 2020. In Proceedings of the 2020 ACM international joint conference and
2020 international symposium on pervasive and ubiquitous computing and wearable
computers.

[5] Lin Wang, Hristijan Gjoreski, Mathias Ciliberto, Sami Mekki, Stefan Valentin,
and Daniel Roggen. 2019. Enabling reproducible research in sensor-based trans-
portation mode recognition with the Sussex-Huawei dataset. IEEE Access 7 (2019),

10870–10891.
[6] Lin Wang, Hristijan Gjoreski, Kazuya Murao, Tsuyoshi Okita, and Daniel Roggen.

2018. Summary of the sussex-huawei locomotion-transportation recognition
challenge. In Proceedings of the 2018 ACM international joint conference and 2018
international symposium on pervasive and ubiquitous computing and wearable
computers. 1521–1530.

[7] Peter Widhalm, Maximilian Leodolter, and Norbert Brändle. 2018. Top in the Lab,
Flop in the Field?: Evaluation of a Sensor-based Travel Activity Classifier with
the SHL Dataset. In Proceedings of the 2018 ACM International Joint Conference
and 2018 International Symposium on Pervasive and Ubiquitous Computing and
Wearable Computers. ACM, 1479–1487.

[8] Peter Widhalm, Maximilian Leodolter, and Norbert Brändle. 2019. Ensemble-
based domain adaptation for transport mode recognition with mobile sensors.
In Adjunct Proceedings of the 2019 ACM International Joint Conference on Perva-
sive and Ubiquitous Computing and Proceedings of the 2019 ACM International
Symposium on Wearable Computers. 857–861.

[9] Peter Widhalm, Maximilian Leodolter, and Norbert Brändle. 2019. Into the
Wild—Avoiding Pitfalls in the Evaluation of Travel Activity Classifiers. In Human
Activity Sensing. Springer, 197–211.

[10] Xiaojin Zhu, John Lafferty, and Ronald Rosenfeld. 2005. Semi-supervised learning
with graphs. Ph.D. Dissertation. Carnegie Mellon University, language technolo-
gies institute.

https://doi.org/10.1109/ACCESS.2018.2858933

	Abstract
	1 Introduction
	2 Data and Task Description
	3 Processing Pipeline
	3.1 Feature Extraction
	3.2 Phone Position Recognition
	3.3 Phone Position and User-specific Transport Mode Classification
	3.4 Nearest Neighbour Smoothing

	4 Results
	5 Conclusion
	References

