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The use of ensemble learning, which combines the outputs of multiple classifiers to produce a single estimation result, improved the accuracy of activity recognition.
The ensemble model consists of 1:Time-frequency CNN, 2:Feature&time-frequency CNN, 3:XGBoost and 4:Time-series CNN.
The phone location of SHL test-set was estimated to be Hips. The best F-measure obtained for last 30% SHL validation-set was 84.8%.

Time-series CNN1 Time-series CNN2 Feature&time-frequency CNN
N . . s oo (BT 1ss B 12 o5 o0 i TN 459 006 235 7.79 056 3.03 0.39 Time-series CNN2
o oo QOutput Prediction Probability
185 1.21 0.13 0.58 1.15
: an 0.00 0.00 0.00 0.00 0.00 Feature&time-frequency CNN
" QOutput Prediction Probability
: .- = s 220 358 0.14 000
052 351 025 0t a0 03 089 933 2 - e oL Final Class
g Time-frequency CNN1 Logistic Regression —=>|  Train, Subway ~ —> ; i
Time-frequency CNN1 Time-frequency CNN2 XGBoost o~ RSy 0.16 WD [l Output Prediction Probability € € Overwrite Estimation
I g S = s 090 0.72 054 12.23
Time-frequency CNN2
sn 6.73 3.06 0.00 092 1.38 Output Prediction Probability
y 145 0.76 0.00 0.08 0.08
XGBoost
Sl Weking  fn o Bke  Cr ms  Tein o Sibwe Output Prediction Probability
Predicted label
Acc, Gyr, and Mag were converted into the world coordinate system (North- User Estimation (N=2) ~ Phone Location Estimation (N=4)

East-Down Coordinate) by obtaining the rotation matrix from the orientation. —
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MODEL1: Time-frequency CNN

The model was constructed using Acc, Mag and Gyr time-frequnency spectrums
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MODEL2: Feature&time-frequency CNN MODEL3: XGBoost
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MODEL4: Time-series CNN Ensemble Learning

This model was constructed using Pre and LAcc in the world coordinate system. Time-series CNN1 Time-series CNN2
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with SHL Validation-set

[Lmearr’\cce\evauanH\'\-or\d coordinate H BandPassFilter 500x5x1
e
Time-frequency CNN1 Time-frequency CNN2
126x1x32 121x1x32 BatchNormalization
Lx = abs(max(x)}+abs(min(x) . . . .
II B0tz . 512 l g Logistic regression model with 8 outputs of 5 models as
S ( I] ﬂ A input (Input shape 8x5=40).
et i gy domse e The estimation class for the logistic regression model
consut 22 oot has been partially overridden. The frames that the time-
stride (1, 1) stride (4, . o .
series CNN1 estimated to be train and subway were
[ Fresseure H H‘g[hupsa[ﬁzm"e’ ]— canvdes, 32 . . .
sride (4. 1) overwritten with it.




	Slide Number 1

