Ensemble Learning for Human Activity Recognition

Ryoichi Sekiguchi, Kenji Abe, Takumi Yokoyama, Masayasu Kumano, Masaki Kawakatsu

Tokyo Denki University

The use of ensemble learning, which combines the outputs of multiple classifiers to produce a single estimation result, improved the accuracy of activity recognition. The ensemble model consists of 1:Time-frequency CNN, 2:Feature&time-frequency CNN, 3:XGBoost and 4:Time-series CNN. The phone location of SHL test-set was estimated to be Hips. The best F-measure obtained for last 30% SHL validation-set was 84.8%.

The model was constructed using Acc, Mag and Gyr time-frequnency spectrums

MODEL2: Feature&time-frequency CNN		MODEL3: XGBoost				
	6//c2/1 4/7/2/22		LAcc XY	LAcc Z	Gyr Z	Mag Z
n LAcc, we made values that was um of continuous two points of III 500 points in each frame for a	es that was points of rame for a nput shape y spectrums $+ y^2$ onds overlap 31x31x2).	Mean, Variance, Skewness and Kurtosis	0	0		
exis-z and $\sqrt{x^2 + y^2}$ (Input shape		Sum of FFT results every 5Hz		0	0	0
n Mag, time-frequency spectrums or an axis-z and $\sqrt{x^2 + y^2}$		Maximum values of FFT results every 5Hz		0	0	0
ime-window two seconds overlap .00 ms (Input shape $131x31x2$).		Frequencies that takes the maximum value of the FFT result every 5Hz		0	0	0

$\frac{\text{DODEL4: Time-series CNN}}{\text{This model was constructed using Pre and LAcc in the world coordinate system.}}$

Logistic regression model with 8 outputs of 5 models as input (Input shape 8x5=40).

The estimation class for the logistic regression model has been partially overridden. The frames that the timeseries CNN1 estimated to be train and subway were overwritten with it.