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ABSTRACT
This paper discusses in detail our (Team:AISA) ensemble
based approach to detect Human Activity for the Sussex-
Huawei Locomotion-Transportation (SHL) recognition chal-
lenge. The SHL recognition challenge is an open competition
wherein the participants are tasked with recognizing 8 dif-
ferent types of activities based on smartphone data collected
frommultiple positions - Hand, Hips, Torso, Bag. On themag-
nitude of sensor data, time and frequency domain features
were calculated to achieve position independence. To make
the model robust, we trained it with a random shuffle of the
training and validation data provided. To find the optimal
hyper-parameters, we parallely executed randomized search
to choose the best performing model from about 200 models.
We set aside 30% of this combined dataset for internal testing
and the model predicted human activities with an F1-Score
of 86% on this test dataset.

CCS CONCEPTS
• Human-centered computing → Ubiquitous and mo-
bile computing; •Computingmethodologies→Ensem-
ble methods; Cross-validation.
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1 INTRODUCTION
As smartphone and wearable device adoption becomes preva-
lent, the amount of sensor data collected from these devices
has also increased exponentially; giving researchers the op-
portunity to extract meaningful insights. Few applications
of these are, health monitoring and diagnosis [7], parking
spot detection, traffic route monitoring [9], assistive technol-
ogy, and elder-care, indoor localization and navigation, etc.
Activity recognition is a core building block behind many of
these[10]. It takes input in the form of raw sensor readings
and predicts a user’s motion activity.
The Sussex-Huawei Locomotion - Transportation (SHL)

dataset [13] [5] with eight modes of locomotion, three users
and four smartphone positions is one of the most comprehen-
sive datasets for modeling activity recognition from mobile
sensor data. The Sussex-Huawei Locomotion-Transportation
(SHL) recognition challenge, 2020 is intended to recognize
the eight modes of activities i.e. walk, run, still, subway,
bike, car, bus, train, and subway from inertial sensor data
by keeping a smartphone in different positions. The goal of
this challenge is to recognize eight modes of locomotion and
transportation (activities) independent of the position of the
smartphone.
The key difference this year is the additional hand data

provided in the training set along with last year’s training
data for the rest of the phone positions. Last year the partic-
ipants were supposed to predict activity on the hand data
provided in the test. This year the test data on which the
predictions must be made is given from an unknown location
and in a time shuffled manner to the participants.
We (Team:AISA) approach the challenge by first prepro-

cessing the sensor data and then extracting a number of
important features and finding the best hyper-parameters
by using randomized grid search with parallel execution. We
finally proceed to train a hyper-parameter tuned random
forest classification model. Random forests [4][14] are com-
putationally efficient to train and test, making them excellent
candidates for real-world prediction tasks.
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The paper is organized as follows: In Section 2, we de-
scribe the dataset and implement exploratory data analysis
techniques on the dataset provided for this year’s challenge.
In section 3, we discuss about the data preprocessing and fea-
ture engineering in our pipeline. In section 4, we discuss the
model used and techniques for improving the performance of
the model. We conducted experiments before proposing the
pipeline which is discussed in section 5. At last, we conclude
by reporting the findings and scope of the future work.

2 SHL RECOGNITION CHALLENGE DATA
The SHL Recognition Challenge 2020 focussed on identify-
ing 8 modes of transportation - Still, Walk, Run, Bike, Car,
Bus, Train, Subway using inertial sensor data of a smart-
phone. The dataset was acquired from three users wearing
four smartphones at positions - Hips, Bag, Hand and Torso
simultaneously. It contained labeled data logged from 16
sensor modalities over 2812 hours.

The Dataset was divided into 3 parts - SHL-Training, SHL-
Validation and SHL-Test dataset. The SHL-Training dataset
contained labeled data over 59 days, SHL-Validation data over
6 days and SHL-Test data over 40 days. SHL-Training data
was the largest, containing raw sensor data at four positions
from User 1. The SHL-Validation contained data for User 2
and User 3 at four positions while, SHL-Test contained data
for User 2 and User 3 at a position, which was kept unknown.
The raw sensor data was sampled at frequency of 100Hz

and included data from following sensors: acceleration (x, y
and z), linear acceleration (x, y and z), magnetic field (x, y
and z), gravity (x, y and z), gyroscope (x, y and z), Orientation
(x, y, z and w) and Pressure. The data was segmented with
a non-overlapping sliding window of 5 seconds and labels
were provided per sample. The frames in SHL-Training and
SHL-Validation data were consecutive while, in SHL-Test, the
frames were shuffled.

3 PREPROCESSING AND FEATURES
Data Preprocessing
We observed that the SHL-Training and SHL-Validation data
consisted of missing values in several samples. In these cases,
for each sample of 5 seconds, we replaced the missing values
with mean of the values in the frame.

Feature Engineering
Since our approach was to classify activities using classical
machine learning, features had to be calculated for respec-
tive window of data. To overcome the impact of position
and orientation, we calculate the magnitude for each of the
sensor.

𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 =
√
𝑥2 + 𝑦2 + 𝑧2

Figure 1: Combined distribution of activities across SHL-
Training and SHL-Validation dataset:Still-1, Walk-2, Run-3,
Bike-4, Car-5, Bus-6, Train-7, Subway-8

Based on the assumption that user is not likely to change
activity during five second window, we selected window
size as five-second for feature extraction. Also, SHL-Test data
contained samples with window-size as five seconds, limiting
the maximum size of window to five-second.
Statistical features were extracted [1] [11] from accelera-

tion, linear acceleration, magnetic field, gyroscope and pres-
sure magnitude for every five-second window. The statistical
features can be categorized into time-domain and frequency-
domain as described below:

• Time-Domain: For each window of 5 second, we calcu-
late the mean, median, maximum, minimum, standard
deviation, variance, interquartile range on the mag-
nitude value of the sensor. Mean, median and mode
measured the central tendency of data while standard
deviation, variance and interquartile range described
the spread of the data for every window.

• Frequency-Domain: Each window of 5 second data
was transformed into frequency domain using fast
fourier transform (FFT) to analyze spectral features.
We extracted mean frequency, peak frequency, kurto-
sis, skewness, energy and entropy for each segment
from respective sensors. Kurtosis and skewness quan-
tify the peak and asymmetry in probability density
function of the signal respectively. The Energy Spec-
tral Density describes how the energy of a signal or a
time series is distributed with frequency [6]. Entropy
was calculated to discriminate between similar energy
features.
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Overall 65 features were calculated for model training. For
each window of five-second, corresponding label was deter-
mined using mode of the labels provided in SHL-Training
and SHL-Validation dataset.

Data Preparation
The SHL-Training and SHL-Validation consisted of frames
consecutive in time at all four positions. The SHL-Test data
contained shuffled frames for an unknown position. To de-
velop a model that generalizes across all four positions and
three users, features extracted for both SHL-Training and
SHL-Validation were combined together in single training
dataset. The frames in this combined dataset were further
shuffled and split into Training dataset, 70% and Test dataset
30%.

Figure 2: Structure of Activity Recognition System

4 METHODOLOGY
The goal of this year’s challenge was to develop a user-
independent pipeline to recognize eightmodes of locomotion.
A Decision Tree is a non-parametric model implemented
based on divide and conquer strategy. It is mainly used as
base classifier in many activity recognitions researches [11]
as it is easy to build and interpret. Since, the location was
unknown in SHL-Test data, we needed to develop model that
generalizes across all locations given in SHL-Training and
SHL-Validation dataset. To improve accuracy and prevent
overfitting, we opted for ensemble of decision trees, Random
Forest. In Random Forest classifier, multiple decision trees
were built from different sample drawn with replacement
from the Training dataset. To reduce co-relation between
trees, at each split in a tree, random sample of m features
were selected from full set. The output from each decision
tree was combined by averaging the probabilistic predic-
tion instead of letting each classifier vote for a single class.
This led to improved accuracy in prediction on Test dataset.
We used scikit-learn’s Random Forest. Since, we were using
mode to extract label for each frame in Training dataset, the
predicted activity was same for each observation in a five-
second frame. We achieved F1-Score of 86% on Test dataset.

Figure 2 illustrates the structure of our activity recognition
system.

Hyperparameter Tuning
In most cases Random Forest works reasonably well with
the default values of the hyperparameters specified in scikit-
learn. Out of SVM, KNN, XGBoost and Random Forest, we
found Random Forest to have the best combination of accu-
racy and training time, making it suitable for our analysis.
Tuning the parameters helped us achieve an increase in ac-
curacy in comparison to the default values.
Probst et al. provide some guidance on how to tune pa-

rameters effectively [8]. The number of trees should be set
high: the higher the number of trees, the better the results
in terms of performance and precision of variable impor-
tances. However, the improvement obtained by adding trees
diminishes as more and more trees are added. Apart from
this, we also tuned maximum tree depth to achieve a balance
between model flexibility and avoiding overfitting.
Since there are many other parameters that need to be

assessed, it would make sense to automate the optimal hyper-
parameter search among a combination of many such pa-
rameters. Sklearn provides options for both exhaustive grid
search and randomized grid search. Bengstra et al. [3] have
shown that random experiments are more efficient than grid
experiments for hyper-parameter optimization in the case of
several learning algorithms on several data sets. It is also com-
putationally more efficient to perform randomized hyper-
parameter search. To make the model more robust, we chose
a 10 fold cross validation with random shuffle on the train-
ing data while doing randomized search with 20 iterations;
giving us the best among 200 models.

We finally arrived at the following optimal hyper-parameter
values after performing randomized search:

• Criterion: ’Gini’
• max_depth: 46
• n_estimators: 125

The oob_score with default parameter values was 80.64% and
after parameter tuning, the oob_score improved to 85.12%.
The mean cross validation accuracy for this parameter with
10 fold cross validation was found to be 84.96%. The F1-score
on Test dataset was 86% and accuracy was 85.57%. Parameter
hyper-tuning resulted in reduced model size without any
degradation in performance. The final trained model size is
278.3 MB.

Computation Methods
We trained the random forest model parallelly using all logi-
cal cores to reduce the training time. We had the following
hardware and software packages available for our testing.
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• 2.3 GHz CPU i9 processor with 16 virtual cores and 16
GB RAM.

• Language: Python 3.7.5
• Library: Scikit learn 0.22.1

In scikit-learn implementation, n_jobs=-1 was passed as pa-
rameter during model training which increased the CPU
utilization to 90%. The training time for the model was 5
minutes and 3 seconds and parameter hyper-tuning time
was 20hr 30mins. It took 1 second to predict labels for SHL-
Test dataset.

Figure 3: Normalized confusion matrix on test data : Still-1,
Walk-2, Run-3, Bike-4, Car-5, Bus-6, Train-7, Subway-8

5 EXPERIMENTS
For the prediction, we utilized data from all positions of both
SHL-Training and SHL-Validation dataset. We calculated the
magnitude of the sensor streams and extracted stastical fea-
tures from it. We then combined the features of SHL-Training
and SHL-Validation dataset according to the position.We split
this data in 70:30 ratio for training and testing. Initially, we
evaluated our model with default parameters on the train-
ing dataset using four fold cross validation. The idea was to
train the model on three locations and validate on the fourth
location. The order of frames were preserved in the process.
The performance was not satisfactory as the oob_score was
found to be 74%.
Another approach was to build an ensemble of four ran-

dom forest models for each body position. Each model was
fed with the statistical features which we had calculated.
The final position was determined by taking a vote from

each model. This approach also did not yield satisfactory re-
sults and the maximum accuracy score we achieved was 71%.
The model failed to classify subway, train and bus probably
because of the similarities in the nature of these activities.

To remove dependency of position and order of activities,
after combining SHL-Training and SHL-Validation dataset,
we shuffled the rows. This data was then split into 70:30
ratio. The model was evaluated with 10-fold cross validation
and observed an increase in oob_score to 80% with same
parameters. Parameter tuning was done for this model using
RandomizedSearchCV with 10-fold cross validation and 10 it-
erations. The model parameters that maximized the F1-score
on held-out data were returned as best the parameters. The
final model was trained using the best parameters returned.
The oob_score on the training dataset was then 85.12% and
F1-score of this model on Test dataset was 86%. Figure 3
provides confusion matrix for each activity for this model.

6 CONCLUSION
In this paper, we have presented ensemble approach for
activity recognition using scikit-learn’s Random Forest. The
model was evaluated using shuffled 10-fold cross validation.
The final model was trained with parameters obtained by
implementing RandomizedSearchCV with ShuffleSplit 10-
fold cross validation in 10 iterations. The F1-Score for the
final model on Test dataset is: Still-88%, Walk-94%, Run-99%,
Bike-94%, Car-84%, Bus-77%, Train-80%, Subway-81%.
We observed that there were relatively few samples pro-

vided for activity-Run in Sussex-Huawei Locomotion - Trans-
portation (SHL) dataset [13] [5] from Figure 1. To overcome
the issue of imbalanced dataset, weighted random forest
model can be evaluated on this dataset. Furthermore, the
window size has been considered of a fixed length of 5 sec-
onds. It is possible that adjusting the window size to be of
a shorter duration 2-3 seconds might yield better results
[2]. The recognition result for the testing dataset will be
presented in the summary paper of the challenge [12].
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