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ABSTRACT
In this paper, our team, SensingGO, presents a hierarchical classifier
for Sussex-Huawei Locomotion-Transportation (SHL) recognition
challenge. We first separate the original data into motorized activi-
ties and non-motorized activities in the first layer of the classifier
by using accelerometer data. For the non-motorized activities, we
calculate auto-correlation values with accelerometer data as input
features. For the motorized activities, we take magnetometer and
barometer with mean, maximum, standard deviation values as input
features. Finally, we integrate the recognition results of each layer
of the classifier, and the average F1-score is 50% to the validation
data.

CCS CONCEPTS
• Computing methodologies → Supervised learning by clas-
sification.
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1 INTRODUCTION
Human activity recognition (HAR) is an interesting application
which aims at identifying the mean of activities a person is posing.
There are many prior works [2, 4, 5, 7, 8] to address HAR chal-
lenge, including computer vision, wireless signal, wearable devices,
and smartphones. The Sussex-Huawei Locomotion-Transportation
(SHL) recognition challenge in 2020 provides Sussex-Huawei Loco-
motion-Transportation (SHL) dataset [6, 11], which contains seven
types of sensor data from a smartphone to recognize eight modes
of human activities, such as still, walk, run, bike, car, bus, train,
and subway. The sensor data consist of the data collected from ac-
celerometer, gravity sensor, gyroscope sensor, linear accelerometer,
magnetic force, and barometer. The raw sensor data are sampled
with 100 Hz and recorded from a person and four phone locations,
such as bag, hips,torso, and hand.

In this paper, we present a hierarchical classifier (team name:
SensingGO) to the SHL recognition challenge. The classifier con-
sists of three modules: (1) motion classifier in the first layer, (2)
non-motorized classifier in the second layer, and (3) motorized
classifier in the second layer. By the feature analysis, we find that
inertial sensor data are promising to separate the original data into
motorized and non-motorized activities. Then, the variation of air
pressure and magnetic field have a positive correlation with moving
speed between motorized activities. Auto-correlation values of ac-
celerometer data provides regularity features for the non-motorized
activities. We apply XGBT and a fully-connected neural network as
classifiers for motorized and non-motorized activities, respectively.
Finally, our proposed method performs 50% F1-score in average
with validation data.

In the following, we present our method with more details, and
elaborate our accuracy.

2 DATASET
The overall data belongs to the SHL recognition challenge named
as Sussex-Huawei Locomotion-Transportation (SHL) dataset [6, 11]
including train data, validation data and test data. Both train data
and validation data contain four phone locations (bag, hips, torso,
hand). The train data is recorded by a single participant over 59 days,
and the validation data is recorded by two participants over 6 days.
The dataset contains the following sensor data: acceleration, gravity,
rate of turn, linear acceleration, magnetic field, orientation and

https://doi.org/10.1145/3410530.3414347
https://doi.org/10.1145/3410530.3414347
https://doi.org/10.1145/3410530.3414347


UbiComp/ISWC ’20 Adjunct, September 12–16, 2020, Virtual Event, Mexico Tseng et al.

pressure. The dataset is labeled with the following eight activities:
still, walking, run, bike, car, bus, train, and subway. Three datasets
are segmented in non-overlapping windows with 5 seconds length
and the order is guaranteed in 5 seconds. The ratio of each label
is not the same. Statically, the label Still accounts for the highest
ratio which is 20% in all labels. On the other hand, the label Run
just accounts for 1.9%.

3 METHOD
3.1 Overview
We design a hierarchical model to classify SHL dataset to apply
different features and models to retrieve the final results gradually.
The labels we use for model training are decided by focusing on
the mode of the whole 500 samples within a single record instead
of considering all samples within 5 seconds. The reason lies in
our observation that 500 successive labels sampled in 5 seconds
of both train data and validation data seldom differ, which means
participants rarely transfer to other activity in 5 seconds. There are
only 416 records with labels including different activities from the
total 784288 records.

Figure 1: Overview of proposed hierarchical classifiers.

In this paper, we propose a 2-layer architecture consisting of
three models. As shown in Fig. 1, all data pass through the first-
level classifier, the motion classifier, to be roughly classified into
two groups. The first group is supposed to be within walking, run-
ning and biking, while the second group shall be within still, car,
bus, train and subway. There are two second-level classifiers, non-
motorized classifier and motorized classifier, that further classify
those two groups to give out the final results. The motion classifier
and motorized classifier both use the XGBT model provided by
Python API [1]. On the other hand, the non-motorized classifier
uses a 3-layer MLP which has 80, 10 and 3 neurons for the first, sec-
ond and third layer, respectively, and a dropout layer is appended
before the third layer.

In the following sections, we will give more detailed introduction
to explain the features and models we apply for those classifiers.

3.2 First-level Classifier - Motion Classifier
The motion classifier, which predicts whether the input data is
within walking, running and biking or the rest, is built up with
XGBT and is used as the first-level classifier. By observing the sta-
tistics of sensors data, we found that data may be roughly classified
into two groups. A simple example is shown in Fig. 2. Fig. 2 shows
the boxplot presenting the distribution of standard deviations of
each acceleration record with 500 samples. The figure suggests that
the class walking, run and bike have more different distribution
from the rest, and this is also observed from our other experiments
using different statistics of acceleration and linear acceleration.
Therefore, the basic idea of the motion classifier is to separate the
data of walking, running and bike from that of still, car, bus and
subway. To reduce the impact of orientation change caused by
human movements, we calculate force of acceleration and linear
acceleration from the original components in three axes x, y and z.
In order to extract potential information, we calculate statistics like
standard deviation, maximum and minimum of acceleration and
linear acceleration within five hundred samples for each record.
Finally, we utilize those statistics to train the motion classifier with
XGBT.

Figure 2: Boxplots of the standard deviation of acceleration
for all classes.

3.3 Second-level Classifiers - Motorized and
Non-motorized Classifier

After passing through the first level of classifier, the data is sep-
arated into two groups. The data in one group is predicted to be
within non-motorized labels including walking, running and biking,
and the data in the other group is predicted to be possible for still
and other motorized labels including car, bus, train and subway.
Still is grouped together with motorized labels other than the non-
motorized ones since users’ are usually still on motorized vehicles,
and the observed behaviors of sensors from a still user are hence
more similar to those of a user on a motorized vehicular.

Before further classifying these two groups of data, we would
like to convert the coordinate system of data collected from linear
accelerometer. As suggested by [12], different orientations of device
will change the acceleration even if the user is doing the same thing
in the same way, and that causes an issue in activity recognition.
Therefore, the tri-axial linear accelerations denoted as 𝐿𝐴𝑥 , 𝐿𝐴𝑦

and 𝐿𝐴𝑧 are transformed to vertical and horizontal linear accelera-
tions 𝐿𝐴𝑣 and 𝐿𝐴ℎ . 𝐿𝐴𝑣 points toward the center of the Earth like
gravity does, and 𝐿𝐴ℎ is perpendicular to it. The transformation
is calculated together with the gravity in three axes x, y and z,
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denoted as 𝐺𝑥 , 𝐺𝑦 and 𝐺𝑧 . The angle 𝜃 between gravity and user’s
linear acceleration is calculated first, and then the projection can
be applied to retrieve 𝐿𝐴𝑣 and 𝐿𝐴ℎ . The procedure is shown in the
following equations:

𝜃 = arccos
©«
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Next, to classify between walking, running and biking, we apply
auto-correlation coefficient function [3] saying that given measure-
ments𝑋1, 𝑋2, . . . , 𝑋𝑁 at time 𝑡1, 𝑡2, . . . , 𝑡𝑁 , the lag𝑘 auto-correlation
function is defined as

𝑟𝑘 =

∑𝑁−𝑘
𝑖=1 (𝑋𝑖 − 𝑋 ) (𝑋𝑖+𝑘 − 𝑋 )∑𝑁

𝑖=1 (𝑋𝑖 − 𝑋 ) .

(4)

Auto-correlation represents the similarity between the values
of the same variables over successive time intervals and is useful
for finding repeating patterns from data. We compute the auto-
correlation coefficients of 𝐿𝐴𝑣 for each record with 500 samples. To
reduce the input dimension for later training purpose, we reduce
the number of observed lag 𝑘 auto-correlation function from 500
to 250. That is, we only consider 𝑟𝑘 where 0 ≤ 𝑘 ≤ 250.

The auto-correlation coefficients of 𝐿𝐴𝑣 of some records while
walking, running and biking are visualized in Fig. 3. It is observable
that the patterns of 𝐿𝐴𝑣 while walking are much more irregular
than that of 𝐿𝐴𝑣 while running and biking. Furthermore, speaking
of the oscillation between positive and negative correlation, the
auto-correlation coefficients of biking have a higher frequency
than that of the running. Therefore, we believe auto-correlation
coefficients are useful information to classify between walking,
running and biking. We built a neural network which is a 3-layer
MLP for the non-motorized classifier and the evaluation result will
be shown in Sec. 4.

Figure 3: Auto-correlation of 𝐿𝐴𝑣 while walking, running
and biking.

To classify the other group of data including still, car, bus, train
and subway with the motorized classifier, since the users’ motions

are similar in these cases, we rely on other kinds of features in-
stead of using acceleration as before. The first one is magnetic field.
Vehicles like train and subway tend to have higher fluctuation in
the magnetic field due to the material of carriage, the electricity
power used for the vehicles, and other factors from the track [9].
As shown in Fig. 4 which is the boxplots of the variance of mag-
netic field calculated from the data labeled with still, car, bus, train
and subway, the distributions of train and subway are obviously
different from the others’.

Figure 4: Boxplots of the variance of magnetic field with la-
bels of still, car, bus, train and subway.

The second feature we pick is the air pressure measured by a
barometer. The property we mainly utilize is that the volume of
the space where the user is may affect the stability of measured air
pressure [9]. In general, the larger the carriage, the stabler the air
pressure. Fig. 5 and Fig. 6 show the variance and mean value of the
pressure of the data labeled with still, car, bus, train and subway.
The air pressure in a car has a larger variance than that in a bus or
train since it has a smaller car body, which leads to larger fluctuation
in air pressure. A still user outside of any vehicular measures the
stablest air pressure. Moreover, since subway is underground, it
has an average air pressure larger than other vehicles.

Figure 5: Boxplots of the variance of pressure with labels of
still, car, bus, train and subway.

Figure 6: Boxplots of the average of pressure with labels of
still, car, bus, train and subway.

Due to all the reasons mentioned above, we decide to let the
motorized classifier that recognizes still, car, bus, train and subway
rely on the statistics of measured values of magnetic field and air
pressure. The model is built by XGBT and the evaluation results
will be given in Sec. 4.
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4 EVALUATION
All of our experiments are conducted on a PC with a 16-core CPU,
16GB RAM, and an Nvidia GTX 1080 GPU. The overall training time
takes about 46 minutes. To be more detailed, the motion classifier
and the motorized classifier both utilize XGBT and their training
time are 18 seconds and 83.5 seconds, averaged by 5-time experimen-
tal results respectively. It can be inferred that the overall training
time is mainly contributed by the non-motorized classifier which
is a 3-layer MLP. To test its training time, we trained the MLP for
30 epochs for 5 times, and found it averagely early-stopped (when
it fails to progress for more than 5 epochs) at epoch 14. Since each
epoch takes about 190 seconds, the average training time for the
non-motorized classifier can be said to be about 2660 seconds. We
evaluate our models with the validation data provided by the SHL
recognition challenge. As for the testing time, we ran the models
with validation data for 5 times, and the average testing time for the
motion classifier, the motorized classifier and the non-motorized
classifier are 0.1 second, 0.1 second, and 3.4 seconds, respectively.
Since the second-level classifiers can be run in parallel, the averaged
overall testing time is about 3.5 seconds.

For the motion classifier, it can successfully separates non-motor-
ized activities from motorized activities with an F1-score of 88.6%.
As for the second-level classifiers, the non-motorized classifier us-
ing only coefficients of auto-correlation function as features can
classify within the non-motorized classes including walking, run-
ning and biking with an F1-score of 84.7%. The good performance
implies that the coefficients of auto-correlation function may be
powerful features to recognize non-motorized activities. On the
other hands, the motorized classifier achieves only 60.3% F1-score.
We further explore the classification result of the motorized classi-
fier, and the misclassifications mainly happen between car and bus
and between train and subway. While using magnetic field feature
singly can separate car/bus from train/subway with an F1-score of
83.2%, the unideal overall performance may imply that air pressure
measured by barometers may not be a strong enough feature to
distinguish between car and bus and between train and subway.
The exploration of more useful features and the improvement of
the motorized classifier may be our future work.

The confusion matrices of the classification results output from
the first-level classifier and second-level classifiers are shown in
Fig. 7 and Fig. 8, respectively. Fig. 7 shows that the motion classifier
can successfully recognize 65% of non-motorized activities and that
only 1% of the motorized activities are wrongly predicted to be
non-motorized. As for the motorized activities, though the 99% of
them can be predicted correctly, 35% of the predicted motorized
activities are misclassifications. This means that our proposed mo-
tion classifier is unable to recognize these 35% of non-motorized
activities.

We can further explore the classification results of the first-level
classifier. Fig. 8 shows that the motion classifier confuses with data
labeled with bike, and the data labeled with bus and train.The reason
would be that the patterns of inertial sensor values were irregular
for these vehicles, because users on these vehicles would be more
likely to be affected and shaken by the movements of the vehicles.

As for the second-level classifier, Fig. 8 shows that the non-
motorized classifier can not identify the data labeled with run, and
the data labeled with bike, because their behaviors are similar.

Data within motorized activities that the motorized classifier
identifies retains about 50% accuracy. The first reason is that the
data that are labeled with still are more possibly to be misclassified
with those labeled with bus and car. This would result from that
users in car and bus may frequently be still when the vehicles stop
due to the traffic lights or bus stations. The second reason would
be that the mobility of car, bus, train and subway are similar which
makes the variations of sensor data close and similar.

More detailed performance metrics of the three classifiers and
the overall performance are presented in Table. 1.
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Table 1: Performance Metrics.

Precision Recall F1-score
Motion classifier 90.1% 89.3% 88.6%

Non-motorized classifier 87.8% 84.3% 84.7%
Motorized classifier 60.2% 60.7% 60.3%

Overall 64.7% 43.4% 49.9%

5 CONCLUSION
In this paper, we propose a hierarchical classifier with three models
using different architectures and features to the SHL recognition
challenge. Based on our observation of different sensors’ behavior,
we firstly propose the motion classifier to separate all activities into
non-motorized ones and motorized ones. Then, the non-motorized
classifier makes use of auto-correlation values of linear accelerom-
eter data to distinguish each label from non-motorized activities.
Finally, we treat pressure and magnetic field as inertial features in
the motorized classifier to recognize still and other different motor-
ized activities. After a series of experiments, our method achieves
about 50% F1-score in average with validation data.

The recognition result for the testing dataset will be presented
in the summary paper of the challenge [10].
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